Surface integrals using a parametric description Evaluate the surface integral ∫∫S ƒ dS using a parametric description of the surface. ƒ(x, y, z) = x2 + y2, where S is the hemisphere x2 + y2 + z2 = 36, for z ≥ 0

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

Surface integrals using a parametric description Evaluate the surface integral ∫∫S ƒ dS using a parametric description of the surface.

ƒ(x, y, z) = x2 + y2, where S is the hemisphere x2 + y2 + z2 = 36, for z ≥ 0

Expert Solution
Step 1

Given: fx, y, z=x2+y2; S:x2+y2+z2=36, z0
To find: sfx, y, z dS using a parametric description of the surface.

Step 2

We have,
fx, y, z=x2+y2; S:x2+y2+z2=36, z0
Use the spherical coordinate with x=ρsinϕcosθ, y=ρsinϕsinθ and z=ρcosϕ

Parametrizing the given curve, we get
ru, v=6 sinu cosv, 6 sinu sinv, 6 cosu where 0uπ2, 0v2πNow, ru=6 cosu cosv, 6 cosu sinv, -6sinu           rv=-6 sinu sinv, 6 sinu cosv, 0ru×rv=ijk6 cosu cosv6 cosu sinv-6sinu-6 sinu sinv6 sinu cosv0               =i36 sin2u cosv-j-36 sin2u sinv +k36 sinu cosu cos2v+36 sinu cosu sin2v               =i36 sin2u cosv+j36 sin2u sinv +k36 sinu cosu sin2v+cos2v               =i36 sin2u cosv+j36 sin2u sinv +k36 sinu cosu   

steps

Step by step

Solved in 3 steps

Blurred answer
Knowledge Booster
Triple Integral
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,