Surface integrals using a parametric description Evaluate the surface integral ∫∫S ƒ dS using a parametric description of the surface. ƒ(x, y, z) = x2 + y2, where S is the hemisphere x2 + y2 + z2 = 36, for z ≥ 0
Surface integrals using a parametric description Evaluate the surface integral ∫∫S ƒ dS using a parametric description of the surface. ƒ(x, y, z) = x2 + y2, where S is the hemisphere x2 + y2 + z2 = 36, for z ≥ 0
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
Surface
ƒ(x, y, z) = x2 + y2, where S is the hemisphere x2 + y2 + z2 = 36, for z ≥ 0
Expert Solution
Step 1
Given:
To find: using a parametric description of the surface.
Step 2
We have,
Use the spherical coordinate with .
Parametrizing the given curve, we get
Step by step
Solved in 3 steps
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.Similar questions
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,