Suppose you decided to play a gambling game. In order to play the game there is a $1.50 dollar fee to play. If you roll a 1, 2, or 3 you win nothing (i.e., your net profit is $-1.5 dollars). If you roll a 4 or 5, you win $2.50 (i.e., your net profit is $1). If you roll a 6 you win $5.75 (i.e., your net profit is $4.25).
Suppose you decided to play a gambling game. In order to play the game there is a $1.50 dollar fee to play. If you roll a 1, 2, or 3 you win nothing (i.e., your net profit is $-1.5 dollars). If you roll a 4 or 5, you win $2.50 (i.e., your net profit is $1). If you roll a 6 you win $5.75 (i.e., your net profit is $4.25).
a) Use the information described above to constuct a
xx | P(x)P(x) |
(You roll a 1,2,or 3) |
(You roll a 1,2, or 3) |
(You roll a 4 or 5) |
(You roll a 4 or 5) |
(You roll a 6) |
(You roll a 6) |
b) Find the amount you would expect to win or lose each time you played the game. Round your final answer to two decimal places.
μ=
![](/static/compass_v2/shared-icons/check-mark.png)
Trending now
This is a popular solution!
Step by step
Solved in 3 steps with 2 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
![A First Course in Probability (10th Edition)](https://www.bartleby.com/isbn_cover_images/9780134753119/9780134753119_smallCoverImage.gif)
![A First Course in Probability](https://www.bartleby.com/isbn_cover_images/9780321794772/9780321794772_smallCoverImage.gif)
![A First Course in Probability (10th Edition)](https://www.bartleby.com/isbn_cover_images/9780134753119/9780134753119_smallCoverImage.gif)
![A First Course in Probability](https://www.bartleby.com/isbn_cover_images/9780321794772/9780321794772_smallCoverImage.gif)