Suppose we are given the following partial table of Laplace Transforms: f(t) F(s) = L{f(t)} sinh(at) – sin(at) 2a³ cosh(at) cos(at) sinh(at) + sin(at) cosh(at)+cos(at) b. Find L-1 {e-²$(105+3)} S494 2a²s c. Find L{e-4t [cos(3t) + cosh(3t)]} S494 2as² sing only these transforms and the translation theorems on the provided transform sheet, and without sing any partial fraction decompositions: a. Find £{sinh 7t + sin 7t} 54-a4 2s³ S4a4

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
Please answer asappppp correctly using the chart thanks
Suppose we are given the following partial table of Laplace Transforms:
f(t)
sinh(at) – sin(at)
cosh(at) cos(at)
sinh(at) + sin(at)
cosh(at) + cos(at)
b. Find L-1 ¹{e-²5(105+3)}
S4-625
F(s)=L{f(t)}
2a³
c. Find L{e-4t [cos(3t) + cosh (3t)]}
S494
2a²s
54-94
2as²
Using only these transforms and the translation theorems on the provided transform sheet, and without
using any partial fraction decompositions:
a. Find C{sinh 7t + sin 7t}
54-94
25³
S4 a4
Transcribed Image Text:Suppose we are given the following partial table of Laplace Transforms: f(t) sinh(at) – sin(at) cosh(at) cos(at) sinh(at) + sin(at) cosh(at) + cos(at) b. Find L-1 ¹{e-²5(105+3)} S4-625 F(s)=L{f(t)} 2a³ c. Find L{e-4t [cos(3t) + cosh (3t)]} S494 2a²s 54-94 2as² Using only these transforms and the translation theorems on the provided transform sheet, and without using any partial fraction decompositions: a. Find C{sinh 7t + sin 7t} 54-94 25³ S4 a4
Expert Solution
steps

Step by step

Solved in 3 steps with 3 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,