Suppose vector i = [-3,4,-6] and originates at point A at (1,5,-3) and terminates at point 8 at (3,6,9) a. Find vector and write it in both ordered pair and unit vector notation b. Find a normal to vectors and c. Find a unit vector that is the same magnitude as the normal you obtained in question 2, part b. d. Use the dot product to verify that the normal you obtained in question 2, part b is orthogonal to both vectors and e. Suppose vectors and are both direction vectors in a plane that also contains the point (2,-4,7). Determine: L A vector equation for the plane Parametric equations for the plane A scalar equation for the plane
Suppose vector i = [-3,4,-6] and originates at point A at (1,5,-3) and terminates at point 8 at (3,6,9) a. Find vector and write it in both ordered pair and unit vector notation b. Find a normal to vectors and c. Find a unit vector that is the same magnitude as the normal you obtained in question 2, part b. d. Use the dot product to verify that the normal you obtained in question 2, part b is orthogonal to both vectors and e. Suppose vectors and are both direction vectors in a plane that also contains the point (2,-4,7). Determine: L A vector equation for the plane Parametric equations for the plane A scalar equation for the plane
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question

Transcribed Image Text:Suppose vector i = [-3,4,-6) and originates at point A at (1,5,-3) and terminates at point B at (3,6,9)
a. Find vector and write it in both ordered pair and unit vector notation
b. Find a normal to vectors and
c. Find a unit vector that is the same magnitude as the normal you obtained in question 2, part b.
Use the dot product to verify that the normal you obtained in question 2, part b is orthogonal to
both vectors and
d.
e. Suppose vectors i and are both direction vectors in a plane that also contains the point
(2,-4,7). Determine:
L
A vector equation for the plane
Parametric equations for the plane
A scalar equation for the plane
![QUESTION # 2:
Cliven that, J = [-3, 4, -6]
c)
(ordered pair notation) [Using part 6)
n
U = 2₁ + Ĵ + 12k (unit vector notation) Verifying ʼn is orthogonal to t
a) So, V = [2, 1, 12],
J
b) R² = √₂ x ✓
R=
AI
V = [ 3-1, 6-5, 9 +3]
V = [2₁1, 12]
F(x
-3 4
K
-6
2
1
121
R² = 1 (48 + 6) - √(-36 +12) + ^(-3-8)
7² = 54₁ +249-11 R
to
Let = (54, 24, -117
J (54) ² + (24)² + (-11)²
= 254, 24, -117
√2916 +376 + 121
=<54, 24, -117
33613
03613
(441249-11K)
ñ·ū = [54, 24, -11], [-3, 4, -6]
= -162 +96 +66
= 0
Verifying in is orthogonal to
n⋅V = CS4, 24, -11]. [2, 1, 12]
= 105 + 24 - 132
e) Planc contains (2, +4,7)
normal (n) = [$4, 24, -11]
Vector Equation
[R-(21-43₁.7K)]. [54₁ +245-11k] = 0 =
Pargmetric, equation
U= [-3₁4₁-6]
V= [211, 12]
x=2-3£1+ 2+2
y = = 4 +4€2+€₂
2-7 -6€₁ + 12 € ₂
Scolar Equation
54(x-2) ₁24 (y + 4) - 11 (2-7)=0
54x + 24y - 112 + 65 =6](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2Fd1aaa18f-7b3d-4067-9412-71bc31d5205a%2F866cacad-a62b-4ac8-9ea3-166022265d96%2Fpumdzm_processed.jpeg&w=3840&q=75)
Transcribed Image Text:QUESTION # 2:
Cliven that, J = [-3, 4, -6]
c)
(ordered pair notation) [Using part 6)
n
U = 2₁ + Ĵ + 12k (unit vector notation) Verifying ʼn is orthogonal to t
a) So, V = [2, 1, 12],
J
b) R² = √₂ x ✓
R=
AI
V = [ 3-1, 6-5, 9 +3]
V = [2₁1, 12]
F(x
-3 4
K
-6
2
1
121
R² = 1 (48 + 6) - √(-36 +12) + ^(-3-8)
7² = 54₁ +249-11 R
to
Let = (54, 24, -117
J (54) ² + (24)² + (-11)²
= 254, 24, -117
√2916 +376 + 121
=<54, 24, -117
33613
03613
(441249-11K)
ñ·ū = [54, 24, -11], [-3, 4, -6]
= -162 +96 +66
= 0
Verifying in is orthogonal to
n⋅V = CS4, 24, -11]. [2, 1, 12]
= 105 + 24 - 132
e) Planc contains (2, +4,7)
normal (n) = [$4, 24, -11]
Vector Equation
[R-(21-43₁.7K)]. [54₁ +245-11k] = 0 =
Pargmetric, equation
U= [-3₁4₁-6]
V= [211, 12]
x=2-3£1+ 2+2
y = = 4 +4€2+€₂
2-7 -6€₁ + 12 € ₂
Scolar Equation
54(x-2) ₁24 (y + 4) - 11 (2-7)=0
54x + 24y - 112 + 65 =6
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 5 steps with 21 images

Recommended textbooks for you

Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated

Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education

Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY

Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated

Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education

Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY

Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,

