Suppose that you are given n red and n blue water jugs, all of different shapes and sizes. All red jugs hold different amounts of water, as do the blue ones. Moreover, for every red jug, there is a blue jug that holds the same amount of water, and vice versa. Your task is to find a grouping of the jugs into pairs of red and blue jugs that hold the same amount of water. To do so, you may perform the following operation: pick a pair of jugs in which one is red and one is blue, fill the red jug with water, and then pour the water into the blue jug. This operation will tell you whether the red or the blue jug can hold more water, or that they have the same volume. Assume that such a comparison takes one time unit. Your goal is to find an algorithm that makes a minimum number of comparisons to determine the grouping. Remember that you may not directly compare two red jugs or two blue jugs. (a) Describe a deterministic algorithm that uses Θ(n 2 ) comparisons to group the jugs into pairs. (b) Give a randomized algorithm whose expected number of comparisons is O(n log n), and discuss why your is bound is correct. What is the worst-case num- ber of comparisons for your algorithm?

MATLAB: An Introduction with Applications
6th Edition
ISBN:9781119256830
Author:Amos Gilat
Publisher:Amos Gilat
Chapter1: Starting With Matlab
Section: Chapter Questions
Problem 1P
icon
Related questions
Topic Video
Question

Suppose that you are given n red and n blue water jugs, all of different shapes and sizes. All
red jugs hold different amounts of water, as do the blue ones. Moreover, for every red jug,
there is a blue jug that holds the same amount of water, and vice versa.
Your task is to find a grouping of the jugs into pairs of red and blue jugs that hold the same
amount of water. To do so, you may perform the following operation: pick a pair of jugs in
which one is red and one is blue, fill the red jug with water, and then pour the water into the
blue jug. This operation will tell you whether the red or the blue jug can hold more water, or
that they have the same volume. Assume that such a comparison takes one time unit. Your
goal is to find an algorithm that makes a minimum number of comparisons to determine the
grouping. Remember that you may not directly compare two red jugs or two blue jugs.
(a) Describe a deterministic algorithm that uses Θ(n
2
) comparisons to group the jugs into
pairs.
(b) Give a randomized algorithm whose expected number of comparisons is O(n log n), and
discuss why your is bound is correct. What is the worst-case num- ber of comparisons
for your algorithm?

Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps

Blurred answer
Knowledge Booster
Permutation and Combination
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, statistics and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
MATLAB: An Introduction with Applications
MATLAB: An Introduction with Applications
Statistics
ISBN:
9781119256830
Author:
Amos Gilat
Publisher:
John Wiley & Sons Inc
Probability and Statistics for Engineering and th…
Probability and Statistics for Engineering and th…
Statistics
ISBN:
9781305251809
Author:
Jay L. Devore
Publisher:
Cengage Learning
Statistics for The Behavioral Sciences (MindTap C…
Statistics for The Behavioral Sciences (MindTap C…
Statistics
ISBN:
9781305504912
Author:
Frederick J Gravetter, Larry B. Wallnau
Publisher:
Cengage Learning
Elementary Statistics: Picturing the World (7th E…
Elementary Statistics: Picturing the World (7th E…
Statistics
ISBN:
9780134683416
Author:
Ron Larson, Betsy Farber
Publisher:
PEARSON
The Basic Practice of Statistics
The Basic Practice of Statistics
Statistics
ISBN:
9781319042578
Author:
David S. Moore, William I. Notz, Michael A. Fligner
Publisher:
W. H. Freeman
Introduction to the Practice of Statistics
Introduction to the Practice of Statistics
Statistics
ISBN:
9781319013387
Author:
David S. Moore, George P. McCabe, Bruce A. Craig
Publisher:
W. H. Freeman