Suppose that the number of years that a used car will run before a major breakdown is exponentially distributed with an average of 0.25 major breakdowns per year. (a) If you buy a used car today, what is the probability that it will not have experienced a major breakdown after 4 years? (b) How long must a used car run before a major breakdown if it is in the top 25% of used cars with respect to breakdown time?
Continuous Probability Distributions
Probability distributions are of two types, which are continuous probability distributions and discrete probability distributions. A continuous probability distribution contains an infinite number of values. For example, if time is infinite: you could count from 0 to a trillion seconds, billion seconds, so on indefinitely. A discrete probability distribution consists of only a countable set of possible values.
Normal Distribution
Suppose we had to design a bathroom weighing scale, how would we decide what should be the range of the weighing machine? Would we take the highest recorded human weight in history and use that as the upper limit for our weighing scale? This may not be a great idea as the sensitivity of the scale would get reduced if the range is too large. At the same time, if we keep the upper limit too low, it may not be usable for a large percentage of the population!
- Suppose that the number of years that a used car will run before a major breakdown is exponentially distributed with an average of 0.25 major breakdowns per year.
(a) If you buy a used car today, what is the
(b) How long must a used car run before a major breakdown if it is in the top 25% of used cars with respect to breakdown time?
Trending now
This is a popular solution!
Step by step
Solved in 3 steps with 2 images