Suppose that the number of miles that a car can run before its battery wears out is exponentially distributed with an average value of 10,000 miles. If a person desires to take a 5,000-mile trip, what is the probability that he or she will be able to complete the trip without having to replace the car battery? What can be said when the distribution is not exponential?
Continuous Probability Distributions
Probability distributions are of two types, which are continuous probability distributions and discrete probability distributions. A continuous probability distribution contains an infinite number of values. For example, if time is infinite: you could count from 0 to a trillion seconds, billion seconds, so on indefinitely. A discrete probability distribution consists of only a countable set of possible values.
Normal Distribution
Suppose we had to design a bathroom weighing scale, how would we decide what should be the range of the weighing machine? Would we take the highest recorded human weight in history and use that as the upper limit for our weighing scale? This may not be a great idea as the sensitivity of the scale would get reduced if the range is too large. At the same time, if we keep the upper limit too low, it may not be usable for a large percentage of the population!
Suppose that the number of miles that a car can run before its battery wears out is exponentially distributed with an average value of 10,000 miles. If a person desires to take a 5,000-mile trip, what is the probability that he or she will be able to complete the trip without having to replace the car battery? What can be said when the distribution is not exponential?
Trending now
This is a popular solution!
Step by step
Solved in 2 steps with 2 images