Suppose that the length of research papers is uniformly distributed from 10 to 25 pages. We survey a class in which 55 research papers were turned in to a professor. The 55 research papers are considered a random collection of all papers. We are interested in the average length of the research papers. Give the distribution of the sample mean. (Round your standard deviation to three decimal places.) Give the distribution of ΣX. (Round your standard deviation to three decimal places.) Calculate the probability that the professor will need to read a total of more than 1040 pages. (Round your answer to four decimal places.)
Continuous Probability Distributions
Probability distributions are of two types, which are continuous probability distributions and discrete probability distributions. A continuous probability distribution contains an infinite number of values. For example, if time is infinite: you could count from 0 to a trillion seconds, billion seconds, so on indefinitely. A discrete probability distribution consists of only a countable set of possible values.
Normal Distribution
Suppose we had to design a bathroom weighing scale, how would we decide what should be the range of the weighing machine? Would we take the highest recorded human weight in history and use that as the upper limit for our weighing scale? This may not be a great idea as the sensitivity of the scale would get reduced if the range is too large. At the same time, if we keep the upper limit too low, it may not be usable for a large percentage of the population!
Suppose that the length of research papers is uniformly distributed from 10 to 25 pages. We survey a class in which 55 research papers were turned in to a professor. The 55 research papers are considered a random collection of all papers. We are interested in the average length of the research papers.
Give the distribution of the sample mean. (Round your standard deviation to three decimal places.)
Give the distribution of ΣX. (Round your standard deviation to three decimal places.)
Calculate the
Trending now
This is a popular solution!
Step by step
Solved in 4 steps