Suppose that Tammy's blood pressure can be modeled by the following function. p (t) = 91 +24 cos (89 nt)

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
---

## Modeling Blood Pressure with a Mathematical Function

### Mathematical Model of Tammy's Blood Pressure

Suppose that Tammy's blood pressure can be modeled by the following function:

\[ p(t) = 91 + 24 \cos (89\pi t) \]

Tammy's blood pressure increases each time her heart beats, and it decreases as her heart rests in between beats. In this equation, \( p(t) \) is the blood pressure in mmHg (millimeters of mercury), and \( t \) is the time in minutes.

### Objectives

Find the following. If necessary, round to the nearest hundredth:

- Amplitude of \( p \): \_\_\_ mmHg
- Number of heartbeats per minute: \_\_\_
- Period of \( p \): \_\_\_ minutes

### Explanation

**Amplitude of \( p \)**: This represents the maximum deviation from the average blood pressure value. It indicates how much Tammy's blood pressure fluctuates.

**Number of Heartbeats Per Minute**: This is derived from the frequency of the cosine function in the model.

**Period of \( p \)**: This is the time it takes for Tammy's blood pressure to complete one full cycle of increase and decrease.

### Diagram/Interactive Element

- A dialog box for inputting the amplitude, number of heartbeats per minute, and period.
- Buttons labeled "Check," "Save For Later," and "Submit Assignment."

---

Make sure the values you input are rounded to the nearest hundredth if necessary.

---
Transcribed Image Text:--- ## Modeling Blood Pressure with a Mathematical Function ### Mathematical Model of Tammy's Blood Pressure Suppose that Tammy's blood pressure can be modeled by the following function: \[ p(t) = 91 + 24 \cos (89\pi t) \] Tammy's blood pressure increases each time her heart beats, and it decreases as her heart rests in between beats. In this equation, \( p(t) \) is the blood pressure in mmHg (millimeters of mercury), and \( t \) is the time in minutes. ### Objectives Find the following. If necessary, round to the nearest hundredth: - Amplitude of \( p \): \_\_\_ mmHg - Number of heartbeats per minute: \_\_\_ - Period of \( p \): \_\_\_ minutes ### Explanation **Amplitude of \( p \)**: This represents the maximum deviation from the average blood pressure value. It indicates how much Tammy's blood pressure fluctuates. **Number of Heartbeats Per Minute**: This is derived from the frequency of the cosine function in the model. **Period of \( p \)**: This is the time it takes for Tammy's blood pressure to complete one full cycle of increase and decrease. ### Diagram/Interactive Element - A dialog box for inputting the amplitude, number of heartbeats per minute, and period. - Buttons labeled "Check," "Save For Later," and "Submit Assignment." --- Make sure the values you input are rounded to the nearest hundredth if necessary. ---
Expert Solution
steps

Step by step

Solved in 2 steps

Blurred answer
Similar questions
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,