Suppose that p, q,r and s are propositions. Determine if the following argument is valid using any appropriate means. Support your answer. (p → q) (r → s) (p V r) → (q V s)

Elementary Geometry For College Students, 7e
7th Edition
ISBN:9781337614085
Author:Alexander, Daniel C.; Koeberlein, Geralyn M.
Publisher:Alexander, Daniel C.; Koeberlein, Geralyn M.
Chapter1: Line And Angle Relationships
Section1.5: The Format Proof Of A Theorem
Problem 11E: When can a theorem be cited as a reason reason in a proof?
icon
Related questions
Topic Video
Question

This is a discrete math question. This could be solved using truth table. I am just confused. I really need help to do solve this problem.

### Logical Properties and Statements

**Logical Equivalences:**

- **Idempotence:**
  - \( p \lor p \equiv p \)
  - \( p \land p \equiv p \)

- **Commutativity:**
  - \( p \lor q \equiv q \lor p \)
  - \( p \land q \equiv q \land p \)

- **Associativity:**
  - \( p \lor (q \lor r) \equiv (p \lor q) \lor r \)
  - \( p \land (q \land r) \equiv (p \land q) \land r \)

- **Distributivity:**
  - \( p \lor (q \land r) \equiv (p \lor q) \land (p \lor r) \)
  - \( p \land (q \lor r) \equiv (p \land q) \lor (p \land r) \)

- **Absorptivity:**
  - \( p \lor (p \land q) \equiv p \)
  - \( p \land (p \lor q) \equiv p \)

- **Identity:**
  - \( p \lor \bot \equiv p \)
  - \( p \land \top \equiv p \)

- **Complementarity:**
  - \( p \lor (\neg p) \equiv \top \)
  - \( p \land (\neg p) \equiv \bot \)

- **Dominance:**
  - \( p \lor \top \equiv \top \)
  - \( p \land \bot \equiv \bot \)

- **Involution:**
  - \( \neg (\neg p) \equiv p \)

- **Exclusivity:**
  - \( \neg (\top) \equiv \bot \)
  - \( \neg (\bot) \equiv \top \)

- **DeMorgan’s:**
  - \( \neg (p \lor q) \equiv (\neg p) \land (\neg q) \)
  - \( \neg (p \land q) \equiv (\neg p) \lor (\neg q) \)

### Logical Inferences

- **Adjunction:**
  - \( \frac{p
Transcribed Image Text:### Logical Properties and Statements **Logical Equivalences:** - **Idempotence:** - \( p \lor p \equiv p \) - \( p \land p \equiv p \) - **Commutativity:** - \( p \lor q \equiv q \lor p \) - \( p \land q \equiv q \land p \) - **Associativity:** - \( p \lor (q \lor r) \equiv (p \lor q) \lor r \) - \( p \land (q \land r) \equiv (p \land q) \land r \) - **Distributivity:** - \( p \lor (q \land r) \equiv (p \lor q) \land (p \lor r) \) - \( p \land (q \lor r) \equiv (p \land q) \lor (p \land r) \) - **Absorptivity:** - \( p \lor (p \land q) \equiv p \) - \( p \land (p \lor q) \equiv p \) - **Identity:** - \( p \lor \bot \equiv p \) - \( p \land \top \equiv p \) - **Complementarity:** - \( p \lor (\neg p) \equiv \top \) - \( p \land (\neg p) \equiv \bot \) - **Dominance:** - \( p \lor \top \equiv \top \) - \( p \land \bot \equiv \bot \) - **Involution:** - \( \neg (\neg p) \equiv p \) - **Exclusivity:** - \( \neg (\top) \equiv \bot \) - \( \neg (\bot) \equiv \top \) - **DeMorgan’s:** - \( \neg (p \lor q) \equiv (\neg p) \land (\neg q) \) - \( \neg (p \land q) \equiv (\neg p) \lor (\neg q) \) ### Logical Inferences - **Adjunction:** - \( \frac{p
Suppose that \( p, q, r \) and \( s \) are propositions. Determine if the following argument is valid using any appropriate means. Support your answer.

\[
\begin{align*}
(p \rightarrow q) \quad (r \rightarrow s) \\
\hline
(p \lor r) \rightarrow (q \lor s)
\end{align*}
\]
Transcribed Image Text:Suppose that \( p, q, r \) and \( s \) are propositions. Determine if the following argument is valid using any appropriate means. Support your answer. \[ \begin{align*} (p \rightarrow q) \quad (r \rightarrow s) \\ \hline (p \lor r) \rightarrow (q \lor s) \end{align*} \]
Expert Solution
Step 1

Advanced Math homework question answer, step 1, image 1

 

Advanced Math homework question answer, step 1, image 2

steps

Step by step

Solved in 2 steps with 4 images

Blurred answer
Knowledge Booster
Propositional Calculus
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Elementary Geometry For College Students, 7e
Elementary Geometry For College Students, 7e
Geometry
ISBN:
9781337614085
Author:
Alexander, Daniel C.; Koeberlein, Geralyn M.
Publisher:
Cengage,