Suppose that human pulse rates for children over 10 and adults are approximately normally distributed with a mean of 78 and standard deviation of 12. Suppose a person over 10 years of age is chosen as random. Answer the the following questions; rounding your answers to 4 decimal places. 1. The probability that the pulse rate of the individual is less than 60 1.83 2. The probability that the pulse rate of the individual is more than 100 0.8996 3. The probability that the pulse rate of the individual is between than 60 and 80 4. The probability that the pulse rate of the individual either is less than 55 or more than 95 97.74

MATLAB: An Introduction with Applications
6th Edition
ISBN:9781119256830
Author:Amos Gilat
Publisher:Amos Gilat
Chapter1: Starting With Matlab
Section: Chapter Questions
Problem 1P
icon
Related questions
icon
Concept explainers
Question
Suppose that human pulse rates for children over 10 and adults are approximately normally distributed with a mean of 78 and standard deviation of 12. Suppose as random.Answer the question following question, rounding your answers to 4 decimal places.
### Understanding Human Pulse Rate Probabilities

Let's explore the given scenario where human pulse rates for children over 10 and adults are approximately normally distributed. The pulse rates have a mean of 78 and a standard deviation of 12. Given this distribution, we can answer some specific probability questions about an individual's pulse rate.

#### Important Concepts:
- **Normal Distribution:** A type of continuous probability distribution for a real-valued random variable.
- **Mean (μ):** The average of all data points, here it is 78.
- **Standard Deviation (σ):** Measurement of the amount of variation or dispersion, in this case, it is 12.
- **Z-score:** A statistical measurement that describes a value's relationship to the mean of a group of values.

#### Questions and Solutions:
Make sure to round your answers to 4 decimal places.

1. **The probability that the pulse rate of the individual is less than 60:**

\[ P(X < 60) = \boxed{1.83} \]

2. **The probability that the pulse rate of the individual is more than 100:**

\[ P(X > 100) = \boxed{0.8996} \]

3. **The probability that the pulse rate of the individual is between 60 and 80:**

\[ P(60 < X < 80) = \boxed{} \]

4. **The probability that the pulse rate of the individual is either less than 55 or more than 95:**

\[ P(X < 55 \text{ or } X > 95) = \boxed{97.74} \]

### Detailed Explanation for Each Probability:

1. **Less than 60:**
   - Convert the pulse rate to a z-score: \( Z = \frac{X - \mu}{\sigma} = \frac{60 - 78}{12} = -1.5 \).
   - Use a Z-table to find the probability corresponding to \( Z = -1.5 \).

2. **More than 100:**
   - Convert the pulse rate to a z-score: \( Z = \frac{100 - 78}{12} = 1.8333 \).
   - Use a Z-table to find the probability corresponding to \( Z = 1.8333 \).

3. **Between 60 and 80:**
   - Find the z-score for 60 and 80
Transcribed Image Text:### Understanding Human Pulse Rate Probabilities Let's explore the given scenario where human pulse rates for children over 10 and adults are approximately normally distributed. The pulse rates have a mean of 78 and a standard deviation of 12. Given this distribution, we can answer some specific probability questions about an individual's pulse rate. #### Important Concepts: - **Normal Distribution:** A type of continuous probability distribution for a real-valued random variable. - **Mean (μ):** The average of all data points, here it is 78. - **Standard Deviation (σ):** Measurement of the amount of variation or dispersion, in this case, it is 12. - **Z-score:** A statistical measurement that describes a value's relationship to the mean of a group of values. #### Questions and Solutions: Make sure to round your answers to 4 decimal places. 1. **The probability that the pulse rate of the individual is less than 60:** \[ P(X < 60) = \boxed{1.83} \] 2. **The probability that the pulse rate of the individual is more than 100:** \[ P(X > 100) = \boxed{0.8996} \] 3. **The probability that the pulse rate of the individual is between 60 and 80:** \[ P(60 < X < 80) = \boxed{} \] 4. **The probability that the pulse rate of the individual is either less than 55 or more than 95:** \[ P(X < 55 \text{ or } X > 95) = \boxed{97.74} \] ### Detailed Explanation for Each Probability: 1. **Less than 60:** - Convert the pulse rate to a z-score: \( Z = \frac{X - \mu}{\sigma} = \frac{60 - 78}{12} = -1.5 \). - Use a Z-table to find the probability corresponding to \( Z = -1.5 \). 2. **More than 100:** - Convert the pulse rate to a z-score: \( Z = \frac{100 - 78}{12} = 1.8333 \). - Use a Z-table to find the probability corresponding to \( Z = 1.8333 \). 3. **Between 60 and 80:** - Find the z-score for 60 and 80
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Knowledge Booster
Continuous Probability Distribution
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, statistics and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
MATLAB: An Introduction with Applications
MATLAB: An Introduction with Applications
Statistics
ISBN:
9781119256830
Author:
Amos Gilat
Publisher:
John Wiley & Sons Inc
Probability and Statistics for Engineering and th…
Probability and Statistics for Engineering and th…
Statistics
ISBN:
9781305251809
Author:
Jay L. Devore
Publisher:
Cengage Learning
Statistics for The Behavioral Sciences (MindTap C…
Statistics for The Behavioral Sciences (MindTap C…
Statistics
ISBN:
9781305504912
Author:
Frederick J Gravetter, Larry B. Wallnau
Publisher:
Cengage Learning
Elementary Statistics: Picturing the World (7th E…
Elementary Statistics: Picturing the World (7th E…
Statistics
ISBN:
9780134683416
Author:
Ron Larson, Betsy Farber
Publisher:
PEARSON
The Basic Practice of Statistics
The Basic Practice of Statistics
Statistics
ISBN:
9781319042578
Author:
David S. Moore, William I. Notz, Michael A. Fligner
Publisher:
W. H. Freeman
Introduction to the Practice of Statistics
Introduction to the Practice of Statistics
Statistics
ISBN:
9781319013387
Author:
David S. Moore, George P. McCabe, Bruce A. Craig
Publisher:
W. H. Freeman