Suppose that 100 students take a test in a class. Each student has a 2/3 probability of passing the test, and the passing of the test is independent over the students. You wish to bound (from above) the probability that no more than 30 of the students pass the test. a. Use the Markov inequality to bound this probability. b. Use the Chebyshev inequality to bound this probability. c. Use the Chernoff bound to bound this probability.
Suppose that 100 students take a test in a class. Each student has a 2/3 probability of passing the test, and the passing of the test is independent over the students. You wish to bound (from above) the probability that no more than 30 of the students pass the test. a. Use the Markov inequality to bound this probability. b. Use the Chebyshev inequality to bound this probability. c. Use the Chernoff bound to bound this probability.
A First Course in Probability (10th Edition)
10th Edition
ISBN:9780134753119
Author:Sheldon Ross
Publisher:Sheldon Ross
Chapter1: Combinatorial Analysis
Section: Chapter Questions
Problem 1.1P: a. How many different 7-place license plates are possible if the first 2 places are for letters and...
Related questions
Question
Suppose that 100 students take a test in a class. Each student has a 2/3 probability of
passing the test, and the passing of the test is independent over the students. You wish to bound
(from above) the probability that no more than 30 of the students pass the test.
a. Use the Markov inequality to bound this probability.
b. Use the Chebyshev inequality to bound this probability.
c. Use the Chernoff bound to bound this probability.
passing the test, and the passing of the test is independent over the students. You wish to bound
(from above) the probability that no more than 30 of the students pass the test.
a. Use the Markov inequality to bound this probability.
b. Use the Chebyshev inequality to bound this probability.
c. Use the Chernoff bound to bound this probability.
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 4 steps
Recommended textbooks for you
A First Course in Probability (10th Edition)
Probability
ISBN:
9780134753119
Author:
Sheldon Ross
Publisher:
PEARSON
A First Course in Probability (10th Edition)
Probability
ISBN:
9780134753119
Author:
Sheldon Ross
Publisher:
PEARSON