Suppose T: R³ → R4 is a linear transformation with T(e₁) = T(es) = = A = 2 -14 H 5 8 NOTE: e; refers to the ith column of the n x n identity matrix. Find the (standard) matrix A such that T(x) Check Answer 20 -9 -10 13 = Ax. , T(e₂) = 15 7 14 -16

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
Subject: Linear Algebra
Suppose \( T : \mathbb{R}^3 \rightarrow \mathbb{R}^4 \) is a linear transformation with

\[ T(e_1) = \begin{bmatrix} -20 \\ -9 \\ -10 \\ 13 \end{bmatrix}, \quad T(e_2) = \begin{bmatrix} 15 \\ 7 \\ 14 \\ -16 \end{bmatrix}, \]

\[ T(e_3) = \begin{bmatrix} 2 \\ -14 \\ 5 \\ 8 \end{bmatrix}. \]

Find the (standard) matrix \( A \) such that \( T(x) = Ax \).

**NOTE:** \( e_i \) refers to the \( i^{th} \) column of the \( n \times n \) identity matrix.

\[ A = \begin{bmatrix} \boxed{} & \boxed{} & \boxed{} \\ \boxed{} & \boxed{} & \boxed{} \\ \boxed{} & \boxed{} & \boxed{} \\ \boxed{} & \boxed{} & \boxed{} \end{bmatrix} \]

[Check Answer]
Transcribed Image Text:Suppose \( T : \mathbb{R}^3 \rightarrow \mathbb{R}^4 \) is a linear transformation with \[ T(e_1) = \begin{bmatrix} -20 \\ -9 \\ -10 \\ 13 \end{bmatrix}, \quad T(e_2) = \begin{bmatrix} 15 \\ 7 \\ 14 \\ -16 \end{bmatrix}, \] \[ T(e_3) = \begin{bmatrix} 2 \\ -14 \\ 5 \\ 8 \end{bmatrix}. \] Find the (standard) matrix \( A \) such that \( T(x) = Ax \). **NOTE:** \( e_i \) refers to the \( i^{th} \) column of the \( n \times n \) identity matrix. \[ A = \begin{bmatrix} \boxed{} & \boxed{} & \boxed{} \\ \boxed{} & \boxed{} & \boxed{} \\ \boxed{} & \boxed{} & \boxed{} \\ \boxed{} & \boxed{} & \boxed{} \end{bmatrix} \] [Check Answer]
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps with 3 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,