Suppose T: R¹ R² is a linear transformation with T(e₁) [1]. Tez) [12]. Te T(₂) T(es) T(е4) T 9 5 -8 17 NOTE: e, refers to the ith column of the nx n identity matrix. Find T Check Answer 9 -8 8 6 H -[+]

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Question
Suppose \( T : \mathbb{R}^4 \rightarrow \mathbb{R}^2 \) is a linear transformation with 

\[
T(e_1) = 
\begin{bmatrix}
2 \\
4
\end{bmatrix}
, \quad 
T(e_2) = 
\begin{bmatrix}
13 \\
7
\end{bmatrix}
, \quad 
T(e_3) = 
\begin{bmatrix}
4 \\
12
\end{bmatrix}
,
\]

\[
T(e_4) = 
\begin{bmatrix}
-5 \\
17
\end{bmatrix}
. 
\]
Find 

\[
T 
\begin{pmatrix}
9 \\
-8 \\
8 \\
6
\end{pmatrix}
.
\]

NOTE: \( e_i \) refers to the \( i^{th} \) column of the \( n \times n \) identity matrix.

\[
T 
\begin{pmatrix}
9 \\
-8 \\
8 \\
6
\end{pmatrix}
= 
\begin{bmatrix}
\phantom{-} \\
\phantom{-}
\end{bmatrix}
\]

[Check Answer]
Transcribed Image Text:Suppose \( T : \mathbb{R}^4 \rightarrow \mathbb{R}^2 \) is a linear transformation with \[ T(e_1) = \begin{bmatrix} 2 \\ 4 \end{bmatrix} , \quad T(e_2) = \begin{bmatrix} 13 \\ 7 \end{bmatrix} , \quad T(e_3) = \begin{bmatrix} 4 \\ 12 \end{bmatrix} , \] \[ T(e_4) = \begin{bmatrix} -5 \\ 17 \end{bmatrix} . \] Find \[ T \begin{pmatrix} 9 \\ -8 \\ 8 \\ 6 \end{pmatrix} . \] NOTE: \( e_i \) refers to the \( i^{th} \) column of the \( n \times n \) identity matrix. \[ T \begin{pmatrix} 9 \\ -8 \\ 8 \\ 6 \end{pmatrix} = \begin{bmatrix} \phantom{-} \\ \phantom{-} \end{bmatrix} \] [Check Answer]
Let \( S \) be a linear transformation from \( \mathbb{R}^3 \) to \( \mathbb{R}^2 \) with associated matrix 

\[
A = \begin{bmatrix} 3 & 3 & -3 \\ 1 & 2 & -1 \end{bmatrix}.
\]

Let \( T \) be a linear transformation from \( \mathbb{R}^2 \) to \( \mathbb{R}^2 \) with associated matrix 

\[
B = \begin{bmatrix} 2 & -2 \\ 1 & 2 \end{bmatrix}.
\]

Determine the matrix \( C \) of the composition \( T \circ S \).

\[
C = \begin{bmatrix} \Box & \Box & \Box \\ \Box & \Box & \Box \end{bmatrix}
\]
Transcribed Image Text:Let \( S \) be a linear transformation from \( \mathbb{R}^3 \) to \( \mathbb{R}^2 \) with associated matrix \[ A = \begin{bmatrix} 3 & 3 & -3 \\ 1 & 2 & -1 \end{bmatrix}. \] Let \( T \) be a linear transformation from \( \mathbb{R}^2 \) to \( \mathbb{R}^2 \) with associated matrix \[ B = \begin{bmatrix} 2 & -2 \\ 1 & 2 \end{bmatrix}. \] Determine the matrix \( C \) of the composition \( T \circ S \). \[ C = \begin{bmatrix} \Box & \Box & \Box \\ \Box & \Box & \Box \end{bmatrix} \]
Expert Solution
steps

Step by step

Solved in 4 steps with 4 images

Blurred answer
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,