Suppose T : R³ → R³ has 2-dimensional range and we know T(1,0,0)=(2,1,-1), T(1,1,1)=(0,0,0) Which of the following are a possible standard matrix of T? O 2 10 1 0 2 1 1 1 1 0 0 0 2 1 - 1 -2 0 2 1 BAN 1 1 -3 -2 0

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
Suppose \( T : \mathbb{R}^3 \rightarrow \mathbb{R}^3 \) has a 2-dimensional range and we know 

\[ T(1,0,0) = (2,1,-1), \quad T(1,1,1) = (0,0,0) \]

Which of the following are a possible standard matrix of \( T \)?

1. \[
\begin{bmatrix}
2 & 1 & 0 \\
1 & 1 & 0 \\
-1 & 1 & 0
\end{bmatrix}
\]

2. \[
\begin{bmatrix}
2 & 1 & -1 \\
1 & 1 & 1 \\
0 & 0 & 0
\end{bmatrix}
\]

3. \[
\begin{bmatrix}
2 & 1 & -3 \\
1 & 1 & -2 \\
-1 & 1 & 0
\end{bmatrix}
\]

4. \[
\begin{bmatrix}
2 & 1 & -1 \\
1 & 1 & 1 \\
-3 & -2 & 0
\end{bmatrix}
\]
Transcribed Image Text:Suppose \( T : \mathbb{R}^3 \rightarrow \mathbb{R}^3 \) has a 2-dimensional range and we know \[ T(1,0,0) = (2,1,-1), \quad T(1,1,1) = (0,0,0) \] Which of the following are a possible standard matrix of \( T \)? 1. \[ \begin{bmatrix} 2 & 1 & 0 \\ 1 & 1 & 0 \\ -1 & 1 & 0 \end{bmatrix} \] 2. \[ \begin{bmatrix} 2 & 1 & -1 \\ 1 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix} \] 3. \[ \begin{bmatrix} 2 & 1 & -3 \\ 1 & 1 & -2 \\ -1 & 1 & 0 \end{bmatrix} \] 4. \[ \begin{bmatrix} 2 & 1 & -1 \\ 1 & 1 & 1 \\ -3 & -2 & 0 \end{bmatrix} \]
Expert Solution
steps

Step by step

Solved in 3 steps with 3 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,