Suppose, household color TVs are replaced at an average age of μ = 8.4 years after purchase, and the (95% of data) range was from 4.4 to 12.4 years. Thus, the range was 12.4 − 4.4 = 8.0 years. Let x be the age (in years) at which a color TV is replaced. Assume that x has a distribution that is approximately normal. (a) The empirical rule indicates that for a symmetric and bell-shaped distribution, approximately 95% of the data lies within two standard deviations of the mean. Therefore, a 95% range of data values extending from μ − 2σ to μ + 2σ is often used for "commonly occurring" data values. Note that the interval from μ − 2σ to μ + 2σ is 4σ in length. This leads to a "rule of thumb" for estimating the standard deviation from a 95% range of data values. Estimating the standard deviation For a symmetric, bell-shaped distribution, standard deviation ≈ range 4 ≈ high value − low value 4 where it is estimated that about 95% of the commonly occurring data values fall into this range. Use this "rule of thumb" to approximate the standard deviation of x values, where x is the age (in years) at which a color TV is replaced. (Round your answer to one decimal place.)  yrs (b) What is the probability that someone will keep a color TV more than 5 years before replacement? (Round your answer to four decimal places.)  (c) What is the probability that someone will keep a color TV fewer than 10 years before replacement? (Round your answer to four decimal places.)  (d) Assume that the average life of a color TV is 8.4 years with a standard deviation of 2.0 years before it breaks. Suppose that a company guarantees color TVs and will replace a TV that breaks while under guarantee with a new one. However, the company does not want to replace more than 6% of the TVs under guarantee. For how long should the guarantee be made (rounded to the nearest tenth of a year)?

A First Course in Probability (10th Edition)
10th Edition
ISBN:9780134753119
Author:Sheldon Ross
Publisher:Sheldon Ross
Chapter1: Combinatorial Analysis
Section: Chapter Questions
Problem 1.1P: a. How many different 7-place license plates are possible if the first 2 places are for letters and...
icon
Related questions
icon
Concept explainers
Question

Suppose, household color TVs are replaced at an average age of μ = 8.4 years after purchase, and the (95% of data) range was from 4.4 to 12.4 years. Thus, the range was 12.4 − 4.4 = 8.0 years. Let x be the age (in years) at which a color TV is replaced. Assume that x has a distribution that is approximately normal.

(a) The empirical rule indicates that for a symmetric and bell-shaped distribution, approximately 95% of the data lies within two standard deviations of the mean. Therefore, a 95% range of data values extending from μ − 2σ to μ + 2σ is often used for "commonly occurring" data values. Note that the interval from μ − 2σ to μ + 2σ is 4σ in length. This leads to a "rule of thumb" for estimating the standard deviation from a 95% range of data values.
Estimating the standard deviation 

For a symmetric, bell-shaped distribution,
standard deviation ≈
range
4
high value − low value
4
where it is estimated that about 95% of the commonly occurring data values fall into this range.
Use this "rule of thumb" to approximate the standard deviation of x values, where x is the age (in years) at which a color TV is replaced. (Round your answer to one decimal place.) 
 yrs 

(b) What is the probability that someone will keep a color TV more than 5 years before replacement? (Round your answer to four decimal places.) 
 

(c) What is the probability that someone will keep a color TV fewer than 10 years before replacement? (Round your answer to four decimal places.) 
 

(d) Assume that the average life of a color TV is 8.4 years with a standard deviation of 2.0 years before it breaks. Suppose that a company guarantees color TVs and will replace a TV that breaks while under guarantee with a new one. However, the company does not want to replace more than 6% of the TVs under guarantee. For how long should the guarantee be made (rounded to the nearest tenth of a year)?
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 6 steps with 3 images

Blurred answer
Knowledge Booster
Continuous Probability Distribution
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, probability and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
A First Course in Probability (10th Edition)
A First Course in Probability (10th Edition)
Probability
ISBN:
9780134753119
Author:
Sheldon Ross
Publisher:
PEARSON
A First Course in Probability
A First Course in Probability
Probability
ISBN:
9780321794772
Author:
Sheldon Ross
Publisher:
PEARSON