Suppose G is a simple connected graph with 12 vertices and 16 edges. Suppose 4 of its vertices are degree 1, and 3 of its vertices are degree 2. Prove that G is planar. (Hint: Kuratowski)
(b) Suppose G is a simple connected graph with 12 vertices and 16 edges. Suppose 4 of its vertices are degree 1, and 3 of its vertices are degree 2. Prove that G is planar. (Hint: Kuratowski)
(c) Let G be any simple connected planar graph with n vertices and e edges. Suppose there are exactly y vertices of degree 2. Assume that n - y > 3. Prove that e < 3n - y - 6. (Hint: Explain why the degree-2 vertices can be erased, and how to take care of any resulting loops or multiple edges.)
(d) Suppose that a connected simple graph G' has exactly 10 vertices of degree 4, 8 vertices of degree 5, and all other vertices have degree 7. Find the maximum possible number of degree-7 vertices G could have, so that G would still be planar.
![](/static/compass_v2/shared-icons/check-mark.png)
Step by step
Solved in 3 steps
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
![Mathematics For Machine Technology](https://www.bartleby.com/isbn_cover_images/9781337798310/9781337798310_smallCoverImage.jpg)
![Basic Technical Mathematics](https://www.bartleby.com/isbn_cover_images/9780134437705/9780134437705_smallCoverImage.gif)
![Topology](https://www.bartleby.com/isbn_cover_images/9780134689517/9780134689517_smallCoverImage.gif)