Suppose f(x) and f'(x) have the values shown. X 0 1 2 3 f(x) 10 8 9 7 f'(x) 7 8 6 4 5 4 3 لا Let y³ + [f(x)]³ = 10xy + 123. (DO NOT assume y = f(x).) dy dx > Next Question Use implicit differentiation to determine y³ + [ƒ(x)]³ = 10xy + 123. Simplify. at the point (4,-4) on the curve

Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
icon
Related questions
Question
### Implicit Differentiation Practice

#### Problem Statement:
Suppose \( f(x) \) and \( f'(x) \) have the values shown in the table below:

| \( x \)  | 0 | 1 | 2 | 3 | 4 |
|----------|---|---|---|---|---|
| \( f(x) \)  | 10 | 8 | 9 | 7 | 3 |
| \( f'(x) \) | 7 | 8 | 6 | 4 | 5 |

Given:
\[ y^3 + [f(x)]^3 = 10xy + 123 \text{. (DO NOT assume } y = f(x) \text{).}\]

#### Task:
Use implicit differentiation to determine \(\frac{dy}{dx}\) at the point \((4, -4)\) on the curve:
\[ y^3 + [f(x)]^3 = 10xy + 123. \]

Simplify your result.

#### Approach to Solve:

1. **Implicit Differentiation:**
   Apply implicit differentiation to the equation \( y^3 + [f(x)]^3 = 10xy + 123 \) with respect to \( x \).

2. **Find \( \frac{dy}{dx} \) at \( (4, -4) \):**
   Substitute \( x = 4 \) and \( y = -4 \) into the differentiated equation and solve for \( \frac{dy}{dx} \).

#### Steps: 

1. **Differentiation of \(y^3 + [f(x)]^3\):**
\[ \frac{d}{dx} (y^3) + \frac{d}{dx} ([f(x)]^3) \]
\[ 3y^2 \frac{dy}{dx} + 3[f(x)]^2 f'(x) \]

2. **Differentiation of \(10xy + 123\):**
\[ \frac{d}{dx} (10xy) + \frac{d}{dx} (123) \]
\[ 10y + 10x \frac{dy}{dx} \]

3. **Combine and Simplify:**
\[ 3y^2 \frac{dy}{dx} + 3[f(x)]^2 f'(x) =
Transcribed Image Text:### Implicit Differentiation Practice #### Problem Statement: Suppose \( f(x) \) and \( f'(x) \) have the values shown in the table below: | \( x \) | 0 | 1 | 2 | 3 | 4 | |----------|---|---|---|---|---| | \( f(x) \) | 10 | 8 | 9 | 7 | 3 | | \( f'(x) \) | 7 | 8 | 6 | 4 | 5 | Given: \[ y^3 + [f(x)]^3 = 10xy + 123 \text{. (DO NOT assume } y = f(x) \text{).}\] #### Task: Use implicit differentiation to determine \(\frac{dy}{dx}\) at the point \((4, -4)\) on the curve: \[ y^3 + [f(x)]^3 = 10xy + 123. \] Simplify your result. #### Approach to Solve: 1. **Implicit Differentiation:** Apply implicit differentiation to the equation \( y^3 + [f(x)]^3 = 10xy + 123 \) with respect to \( x \). 2. **Find \( \frac{dy}{dx} \) at \( (4, -4) \):** Substitute \( x = 4 \) and \( y = -4 \) into the differentiated equation and solve for \( \frac{dy}{dx} \). #### Steps: 1. **Differentiation of \(y^3 + [f(x)]^3\):** \[ \frac{d}{dx} (y^3) + \frac{d}{dx} ([f(x)]^3) \] \[ 3y^2 \frac{dy}{dx} + 3[f(x)]^2 f'(x) \] 2. **Differentiation of \(10xy + 123\):** \[ \frac{d}{dx} (10xy) + \frac{d}{dx} (123) \] \[ 10y + 10x \frac{dy}{dx} \] 3. **Combine and Simplify:** \[ 3y^2 \frac{dy}{dx} + 3[f(x)]^2 f'(x) =
Expert Solution
steps

Step by step

Solved in 3 steps with 4 images

Blurred answer
Recommended textbooks for you
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
Thomas' Calculus (14th Edition)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
Calculus: Early Transcendentals (3rd Edition)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
Precalculus
Precalculus
Calculus
ISBN:
9780135189405
Author:
Michael Sullivan
Publisher:
PEARSON
Calculus: Early Transcendental Functions
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning