Suppose f(x) = 4x2 8x-296. %3D (a) In which step does an error first occur in finding the zeros of f(x)? V(- 8)² – 4(4)( – 296) Step 1: z = 8 +. 2(4) V64 + 4736 Step 2: x = 8+ 8 4800 Step 3: x = 8 + 8 V1600 - 3 Step 4: a = 8+ 8 40/3 Step 5: a 8+ 8 Step 6: z 8 ± 5/3 Select an answer Find the zeros of f(x). Leave your answer in exact form. Use commas to separate multiple answers. there was no error in part (a) above, answer DNE.
Contingency Table
A contingency table can be defined as the visual representation of the relationship between two or more categorical variables that can be evaluated and registered. It is a categorical version of the scatterplot, which is used to investigate the linear relationship between two variables. A contingency table is indeed a type of frequency distribution table that displays two variables at the same time.
Binomial Distribution
Binomial is an algebraic expression of the sum or the difference of two terms. Before knowing about binomial distribution, we must know about the binomial theorem.
![The image presents a mathematical problem involving the polynomial function \( f(x) = 4x^2 - 8x - 296 \). The task is to identify the step where an error first occurs when finding the zeros of \( f(x) \) using the quadratic formula.
### Quadratic Formula Steps:
1. **Step 1:**
\[
x = \frac{-8 \pm \sqrt{(-8)^2 - 4(4)(-296)}}{2(4)}
\]
2. **Step 2:**
\[
x = \frac{-8 \pm \sqrt{64 + 4736}}{8}
\]
3. **Step 3:**
\[
x = \frac{-8 \pm \sqrt{4800}}{8}
\]
4. **Step 4:**
\[
x = \frac{-8 \pm \sqrt{1600 \cdot 3}}{8}
\]
5. **Step 5:**
\[
x = \frac{-8 \pm \frac{40 \sqrt{3}}{8}}{8}
\]
6. **Step 6:**
\[
x = -8 \pm 5\sqrt{3}
\]
### Task:
- **(a)** Identify the initial step where an error occurs in calculating the zeros of \( f(x) \).
### Final Question:
- Find the zeros of \( f(x) \) in exact form. Separate multiple answers with commas. If there’s no error in part (a), answer as "DNE" (Does Not Exist).
**Note:** There is a visible error in Step 6 where the simplification shows incorrect substitution or calculation based on the previous steps.](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2Fb0d79c4c-40ce-427b-b4a0-26ffd9f423cd%2Ff0826ff0-8b64-4476-8b57-8f43e8ac7b70%2F4as8qjw_processed.jpeg&w=3840&q=75)
![](/static/compass_v2/shared-icons/check-mark.png)
We compare the equation f(x)=4x2 -8x - 296 with y=ax2+bx+c
So, a=4, b=-8 and c= -296
Using the quadratic formula we get:
Step by step
Solved in 2 steps
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
![Calculus: Early Transcendentals](https://www.bartleby.com/isbn_cover_images/9781285741550/9781285741550_smallCoverImage.gif)
![Thomas' Calculus (14th Edition)](https://www.bartleby.com/isbn_cover_images/9780134438986/9780134438986_smallCoverImage.gif)
![Calculus: Early Transcendentals (3rd Edition)](https://www.bartleby.com/isbn_cover_images/9780134763644/9780134763644_smallCoverImage.gif)
![Calculus: Early Transcendentals](https://www.bartleby.com/isbn_cover_images/9781285741550/9781285741550_smallCoverImage.gif)
![Thomas' Calculus (14th Edition)](https://www.bartleby.com/isbn_cover_images/9780134438986/9780134438986_smallCoverImage.gif)
![Calculus: Early Transcendentals (3rd Edition)](https://www.bartleby.com/isbn_cover_images/9780134763644/9780134763644_smallCoverImage.gif)
![Calculus: Early Transcendentals](https://www.bartleby.com/isbn_cover_images/9781319050740/9781319050740_smallCoverImage.gif)
![Precalculus](https://www.bartleby.com/isbn_cover_images/9780135189405/9780135189405_smallCoverImage.gif)
![Calculus: Early Transcendental Functions](https://www.bartleby.com/isbn_cover_images/9781337552516/9781337552516_smallCoverImage.gif)