Suppose f(x) = √. Give the function for each of the following transformations. The graph of f(x) reflected across the x-axis. Of(x) = -√ Of(x) = Of(x) = -x -√√√x The graph of f(x) shifted right 5 units Of(x)=√x - 5 Of(x)=√x + 5 Of(x) = √√x + 5 Of(x)=√x - 5 The graph of f(x) shifted down 1 units Of(x)=√x+1 Of(x)=√x - 1 Of(x)=√x-1 Of(x)=√x+1 The graph of f(x) shifted left 5 units and shifted up 1 units. Of(x) = √√√x + 5+1 Of(x)=√x+5-1 Of(x)=√x-5-1 Of(x) = √√x - 5+1 The graph of f(x) stretched vertically by a factor of 5. Of(x) = √5x 1 Of(x) = 5 ○ f(x) = -√√√x Of(x) = 5√x

Algebra and Trigonometry (6th Edition)
6th Edition
ISBN:9780134463216
Author:Robert F. Blitzer
Publisher:Robert F. Blitzer
ChapterP: Prerequisites: Fundamental Concepts Of Algebra
Section: Chapter Questions
Problem 1MCCP: In Exercises 1-25, simplify the given expression or perform the indicated operation (and simplify,...
icon
Related questions
Question
100%
**Title:** Transformations of the Square Root Function

Suppose \( f(x) = \sqrt{x} \). Identify the function for each of the following transformations.

---

### Transformation Descriptions and Options

**1. The graph of \( f(x) \) reflected across the x-axis.**

- \( f(x) = -\sqrt{x} \)
- \( f(x) = -\sqrt{-x} \)
- \( f(x) = \sqrt{-x} \)

**2. The graph of \( f(x) \) shifted right 5 units.**

- \( f(x) = \sqrt{x-5} \)
- \( f(x) = \sqrt{x+5} \)
- \( f(x) = \sqrt{x}+5 \)
- \( f(x) = \sqrt{x}-5 \)

**3. The graph of \( f(x) \) shifted down 1 unit.**

- \( f(x) = \sqrt{x}+1 \)
- \( f(x) = \sqrt{x}-1 \)
- \( f(x) = \sqrt{x+1} \)
- \( f(x) = \sqrt{x-1} \)

**4. The graph of \( f(x) \) shifted left 5 units and shifted up 1 unit.**

- \( f(x) = \sqrt{x+5}+1 \)
- \( f(x) = \sqrt{x+5}-1 \)
- \( f(x) = \sqrt{x-5}-1 \)
- \( f(x) = \sqrt{x-5}+1 \)

**5. The graph of \( f(x) \) stretched vertically by a factor of 5.**

- \( f(x) = \sqrt{5x} \)
- \( f(x) = \sqrt{\frac{1}{5}x} \)
- \( f(x) = \frac{1}{5}\sqrt{x} \)
- \( f(x) = 5\sqrt{x} \)
Transcribed Image Text:**Title:** Transformations of the Square Root Function Suppose \( f(x) = \sqrt{x} \). Identify the function for each of the following transformations. --- ### Transformation Descriptions and Options **1. The graph of \( f(x) \) reflected across the x-axis.** - \( f(x) = -\sqrt{x} \) - \( f(x) = -\sqrt{-x} \) - \( f(x) = \sqrt{-x} \) **2. The graph of \( f(x) \) shifted right 5 units.** - \( f(x) = \sqrt{x-5} \) - \( f(x) = \sqrt{x+5} \) - \( f(x) = \sqrt{x}+5 \) - \( f(x) = \sqrt{x}-5 \) **3. The graph of \( f(x) \) shifted down 1 unit.** - \( f(x) = \sqrt{x}+1 \) - \( f(x) = \sqrt{x}-1 \) - \( f(x) = \sqrt{x+1} \) - \( f(x) = \sqrt{x-1} \) **4. The graph of \( f(x) \) shifted left 5 units and shifted up 1 unit.** - \( f(x) = \sqrt{x+5}+1 \) - \( f(x) = \sqrt{x+5}-1 \) - \( f(x) = \sqrt{x-5}-1 \) - \( f(x) = \sqrt{x-5}+1 \) **5. The graph of \( f(x) \) stretched vertically by a factor of 5.** - \( f(x) = \sqrt{5x} \) - \( f(x) = \sqrt{\frac{1}{5}x} \) - \( f(x) = \frac{1}{5}\sqrt{x} \) - \( f(x) = 5\sqrt{x} \)
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Recommended textbooks for you
Algebra and Trigonometry (6th Edition)
Algebra and Trigonometry (6th Edition)
Algebra
ISBN:
9780134463216
Author:
Robert F. Blitzer
Publisher:
PEARSON
Contemporary Abstract Algebra
Contemporary Abstract Algebra
Algebra
ISBN:
9781305657960
Author:
Joseph Gallian
Publisher:
Cengage Learning
Linear Algebra: A Modern Introduction
Linear Algebra: A Modern Introduction
Algebra
ISBN:
9781285463247
Author:
David Poole
Publisher:
Cengage Learning
Algebra And Trigonometry (11th Edition)
Algebra And Trigonometry (11th Edition)
Algebra
ISBN:
9780135163078
Author:
Michael Sullivan
Publisher:
PEARSON
Introduction to Linear Algebra, Fifth Edition
Introduction to Linear Algebra, Fifth Edition
Algebra
ISBN:
9780980232776
Author:
Gilbert Strang
Publisher:
Wellesley-Cambridge Press
College Algebra (Collegiate Math)
College Algebra (Collegiate Math)
Algebra
ISBN:
9780077836344
Author:
Julie Miller, Donna Gerken
Publisher:
McGraw-Hill Education