Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
Related questions
Question
![**Example Problem: Evaluating an Integral using the Fundamental Theorem of Calculus**
Given the following conditions:
- \( F(4) = 4 \)
- \( F(10) = -9 \)
- \( F'(x) = f(x) \)
Determine the value of the integral:
\[ \int_{8}^{8} f(x) \, dx \]
**Explanation and Solution:**
From the given information, \( F'(x) = f(x) \), we can use the Fundamental Theorem of Calculus to evaluate the integral. The theorem states:
\[ \int_{a}^{b} f(x) \, dx = F(b) - F(a) \]
However, in this problem, we are asked to evaluate the integral from 8 to 8. For any continuous function \( f(x) \):
\[ \int_{a}^{a} f(x) \, dx \]
The above integral evaluates to 0 because there is no interval over which to integrate.
Therefore,
\[ \boxed{0} \]
is the value of the integral \( \int_{8}^{8} f(x) \, dx \).
This principle is important in calculus, demonstrating that integrating a function over an interval where the upper and lower limits are the same always results in zero, regardless of the behavior of the function within that interval.](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2Ffdc195bb-9009-47db-866e-65b6514806e8%2Fbad08bb8-0d5b-4169-bea3-ce9a1283ac7b%2Far6uhx6_processed.jpeg&w=3840&q=75)
Transcribed Image Text:**Example Problem: Evaluating an Integral using the Fundamental Theorem of Calculus**
Given the following conditions:
- \( F(4) = 4 \)
- \( F(10) = -9 \)
- \( F'(x) = f(x) \)
Determine the value of the integral:
\[ \int_{8}^{8} f(x) \, dx \]
**Explanation and Solution:**
From the given information, \( F'(x) = f(x) \), we can use the Fundamental Theorem of Calculus to evaluate the integral. The theorem states:
\[ \int_{a}^{b} f(x) \, dx = F(b) - F(a) \]
However, in this problem, we are asked to evaluate the integral from 8 to 8. For any continuous function \( f(x) \):
\[ \int_{a}^{a} f(x) \, dx \]
The above integral evaluates to 0 because there is no interval over which to integrate.
Therefore,
\[ \boxed{0} \]
is the value of the integral \( \int_{8}^{8} f(x) \, dx \).
This principle is important in calculus, demonstrating that integrating a function over an interval where the upper and lower limits are the same always results in zero, regardless of the behavior of the function within that interval.
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 3 steps with 2 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Calculus: Early Transcendentals](https://www.bartleby.com/isbn_cover_images/9781285741550/9781285741550_smallCoverImage.gif)
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
![Thomas' Calculus (14th Edition)](https://www.bartleby.com/isbn_cover_images/9780134438986/9780134438986_smallCoverImage.gif)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
![Calculus: Early Transcendentals (3rd Edition)](https://www.bartleby.com/isbn_cover_images/9780134763644/9780134763644_smallCoverImage.gif)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
![Calculus: Early Transcendentals](https://www.bartleby.com/isbn_cover_images/9781285741550/9781285741550_smallCoverImage.gif)
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
![Thomas' Calculus (14th Edition)](https://www.bartleby.com/isbn_cover_images/9780134438986/9780134438986_smallCoverImage.gif)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
![Calculus: Early Transcendentals (3rd Edition)](https://www.bartleby.com/isbn_cover_images/9780134763644/9780134763644_smallCoverImage.gif)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
![Calculus: Early Transcendentals](https://www.bartleby.com/isbn_cover_images/9781319050740/9781319050740_smallCoverImage.gif)
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
![Precalculus](https://www.bartleby.com/isbn_cover_images/9780135189405/9780135189405_smallCoverImage.gif)
![Calculus: Early Transcendental Functions](https://www.bartleby.com/isbn_cover_images/9781337552516/9781337552516_smallCoverImage.gif)
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning