Suppose f(): R² → R² and g(): R³ → R² are given by: ƒ = :)-(²) and ()-(7) = g 3y² + Find (f o g)'(x) at x = (₁) 2 y2 X3 = + X3

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
Suppose \( f(\cdot) : \mathbb{R}^2 \rightarrow \mathbb{R}^2 \) and \( g(\cdot) : \mathbb{R}^3 \rightarrow \mathbb{R}^2 \) are given by:

\[ f\begin{pmatrix} y_1 \\ y_2 \end{pmatrix} = \begin{pmatrix} y_1 y_2 - y_2^2 \\ 3y_2 + y_2 \end{pmatrix} \]

and

\[ g\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 2x_1 + x_2 - x_3 \\ x_1^2 x_2 x_3 + x_3^2 \end{pmatrix} \]

Find \((f \circ g)'(x)\) at \( x = \begin{pmatrix} 1 \\ -2 \\ 2 \end{pmatrix} \)
Transcribed Image Text:Suppose \( f(\cdot) : \mathbb{R}^2 \rightarrow \mathbb{R}^2 \) and \( g(\cdot) : \mathbb{R}^3 \rightarrow \mathbb{R}^2 \) are given by: \[ f\begin{pmatrix} y_1 \\ y_2 \end{pmatrix} = \begin{pmatrix} y_1 y_2 - y_2^2 \\ 3y_2 + y_2 \end{pmatrix} \] and \[ g\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 2x_1 + x_2 - x_3 \\ x_1^2 x_2 x_3 + x_3^2 \end{pmatrix} \] Find \((f \circ g)'(x)\) at \( x = \begin{pmatrix} 1 \\ -2 \\ 2 \end{pmatrix} \)
Expert Solution
Step 1

Similar calculations can perform if we change yto yin the 2nd component where only y is written. I hope I produced something that is useful for your purpose of asking. Thank you.

Advanced Math homework question answer, step 1, image 1

 

steps

Step by step

Solved in 4 steps with 4 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,