Suppose an electron (q = - e = -1.6 × 10¬19 C,m=9.1 × 10¬3' kg) is accelerated from rest through a potential difference of Vab = +5000 V. Solve fa the final speed of the electron. Express numerical answer in two significant figures. The potential energy U is related to the electron charge (-e) and potential Vab is related by the equation: U = Assuming all potential energy U is converted to kinetic energy K, K+U = 0 K = -U 1 Since K= mv and using the formula for potential energy above, we arrive at an equation for speed: v= ( 1/2 Plugging in values, the value of the electron's speed is: x 107 m/s V=

Physics for Scientists and Engineers: Foundations and Connections
1st Edition
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Katz, Debora M.
Chapter26: Electric Potential
Section: Chapter Questions
Problem 24PQ: Two point charges, q1 = 2.0 C and q2 = 2.0 C, are placed on the x axis at x = 1.0 m and x = 1.0 m,...
icon
Related questions
Question
Suppose an electron (q = -e = -1.6 x 10¬9 C,m=9.1 x 10¬3' kg) is accelerated from rest through a potential difference of Vab = +5000 V. Solve for
%3D
the final speed of the electron. Express numerical answer in two significant figures.
The potential energy U is related to the electron charge (-e) and potential Vab is related by the equation:
U =
Assuming all potential energy U is converted to kinetic energy K,
K+U = 0
K = -U
1
Since K
mv and using the formula for potential energy above, we arrive at an equation for speed:
2
v = (
1/2
Plugging in values, the value of the electron's speed is:
x 107 m/s
V=
Transcribed Image Text:Suppose an electron (q = -e = -1.6 x 10¬9 C,m=9.1 x 10¬3' kg) is accelerated from rest through a potential difference of Vab = +5000 V. Solve for %3D the final speed of the electron. Express numerical answer in two significant figures. The potential energy U is related to the electron charge (-e) and potential Vab is related by the equation: U = Assuming all potential energy U is converted to kinetic energy K, K+U = 0 K = -U 1 Since K mv and using the formula for potential energy above, we arrive at an equation for speed: 2 v = ( 1/2 Plugging in values, the value of the electron's speed is: x 107 m/s V=
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 1 images

Blurred answer
Knowledge Booster
Electric field
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Physics for Scientists and Engineers: Foundations…
Physics for Scientists and Engineers: Foundations…
Physics
ISBN:
9781133939146
Author:
Katz, Debora M.
Publisher:
Cengage Learning
Principles of Physics: A Calculus-Based Text
Principles of Physics: A Calculus-Based Text
Physics
ISBN:
9781133104261
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning