Suppose A is the symmetric matrix below: A has the eigenvalues and unit vectors: The spectral decomposition of A has the form: Suppose: What is the value of p11? What is the value of 911? A = 2₁ = 9₁ v₁ = √√√2 2₂ = − 9₁ V₂ = √3/2 A = A₁ + A₂ = 2₁V₁ V² + 2₂ V₂V/ A A2 = 1₂V₂v² = = P11 P12 P21 P22/ 911 912 921 922

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
## Spectral Decomposition of a Symmetric Matrix

### Given Matrix A:

Suppose \( A \) is the symmetric matrix below:

\[
A = \begin{bmatrix} 0 & 9 \\ 9 & 0 \end{bmatrix}
\]

### Eigenvalues and Unit Vectors:

\( A \) has the eigenvalues and unit vectors:

\[
\lambda_1 = 9, \quad v_1 = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 1 \end{bmatrix}
\]

\[
\lambda_2 = -9, \quad v_2 = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ -1 \end{bmatrix}
\]

### Spectral Decomposition of A:

The spectral decomposition of \( A \) has the form:

\[
A = A_1 + A_2 = \lambda_1 v_1 v_1^T + \lambda_2 v_2 v_2^T
\]

### Components of Decomposition:

Suppose:

\[
A_1 = \lambda_1 v_1 v_1^T = \begin{pmatrix} p_{11} & p_{12} \\ p_{21} & p_{22} \end{pmatrix}
\]

\[
A_2 = \lambda_2 v_2 v_2^T = \begin{pmatrix} q_{11} & q_{12} \\ q_{21} & q_{22} \end{pmatrix}
\]

### Questions:

1. What is the value of \( p_{11} \)?
2. What is the value of \( q_{11} \)?
Transcribed Image Text:## Spectral Decomposition of a Symmetric Matrix ### Given Matrix A: Suppose \( A \) is the symmetric matrix below: \[ A = \begin{bmatrix} 0 & 9 \\ 9 & 0 \end{bmatrix} \] ### Eigenvalues and Unit Vectors: \( A \) has the eigenvalues and unit vectors: \[ \lambda_1 = 9, \quad v_1 = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \] \[ \lambda_2 = -9, \quad v_2 = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ -1 \end{bmatrix} \] ### Spectral Decomposition of A: The spectral decomposition of \( A \) has the form: \[ A = A_1 + A_2 = \lambda_1 v_1 v_1^T + \lambda_2 v_2 v_2^T \] ### Components of Decomposition: Suppose: \[ A_1 = \lambda_1 v_1 v_1^T = \begin{pmatrix} p_{11} & p_{12} \\ p_{21} & p_{22} \end{pmatrix} \] \[ A_2 = \lambda_2 v_2 v_2^T = \begin{pmatrix} q_{11} & q_{12} \\ q_{21} & q_{22} \end{pmatrix} \] ### Questions: 1. What is the value of \( p_{11} \)? 2. What is the value of \( q_{11} \)?
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps with 3 images

Blurred answer
Similar questions
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,