Suppose A is the matrix for T: R3 - R3 relative to the standard basis. Find the diagonal matrix A' for T relative to the basis B'. 0 -2 -1 1 A = 0 0 -1 B' = {(-1, 1, 0), (2, 1, 0), (0, 0, 1)}

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
Suppose \( A \) is the matrix for \( T: \mathbb{R}^3 \to \mathbb{R}^3 \) relative to the standard basis. Find the diagonal matrix \( A' \) for \( T \) relative to the basis \( B' \).

\[ 
A = \begin{bmatrix} 
0 & -2 & 0 \\ 
-1 & 1 & 0 \\ 
0 & 0 & -1 
\end{bmatrix} 
\]

\[ 
B' = \{ (-1, 1, 0), (2, 1, 0), (0, 0, 1) \} 
\]

The diagram below shows a \( 3 \times 3 \) matrix representation for \( A' \):

\[ 
A' = 
\begin{bmatrix} 
\boxed{\hphantom{1}} & \boxed{\hphantom{1}} & \boxed{\hphantom{1}} \\ 
\boxed{\hphantom{1}} & \boxed{\hphantom{1}} & \boxed{\hphantom{1}} \\ 
\boxed{\hphantom{1}} & \boxed{\hphantom{1}} & \boxed{\hphantom{1}} 
\end{bmatrix} 
\]

Arrows indicate transformations needed to convert \( A \) to \( A' \).
Transcribed Image Text:Suppose \( A \) is the matrix for \( T: \mathbb{R}^3 \to \mathbb{R}^3 \) relative to the standard basis. Find the diagonal matrix \( A' \) for \( T \) relative to the basis \( B' \). \[ A = \begin{bmatrix} 0 & -2 & 0 \\ -1 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix} \] \[ B' = \{ (-1, 1, 0), (2, 1, 0), (0, 0, 1) \} \] The diagram below shows a \( 3 \times 3 \) matrix representation for \( A' \): \[ A' = \begin{bmatrix} \boxed{\hphantom{1}} & \boxed{\hphantom{1}} & \boxed{\hphantom{1}} \\ \boxed{\hphantom{1}} & \boxed{\hphantom{1}} & \boxed{\hphantom{1}} \\ \boxed{\hphantom{1}} & \boxed{\hphantom{1}} & \boxed{\hphantom{1}} \end{bmatrix} \] Arrows indicate transformations needed to convert \( A \) to \( A' \).
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 1 images

Blurred answer
Knowledge Booster
Vector Space
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,