Suppose A has eigenvalue X = with corresponding eigenvector Find the following. A ¹⁰ u 181 1 with corresponding eigenvector u = = A¹0 Question Help: Message instructor (8) [1] and eigenvalue X = 2

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
Suppose \( A \) has eigenvalue \( \lambda = -1 \) with corresponding eigenvector \( \vec{u} = \begin{bmatrix} 1 \\ 4 \end{bmatrix} \), and eigenvalue \( \lambda = 2 \) with corresponding eigenvector \( \vec{v} = \begin{bmatrix} 1 \\ 3 \end{bmatrix} \).

Find the following:

\[
A^{10}\vec{u} = \begin{bmatrix} \Box \\ \Box \end{bmatrix}
\]

\[
A^{10}\vec{v} = \begin{bmatrix} \Box \\ \Box \end{bmatrix}
\]

Question Help:
Transcribed Image Text:Suppose \( A \) has eigenvalue \( \lambda = -1 \) with corresponding eigenvector \( \vec{u} = \begin{bmatrix} 1 \\ 4 \end{bmatrix} \), and eigenvalue \( \lambda = 2 \) with corresponding eigenvector \( \vec{v} = \begin{bmatrix} 1 \\ 3 \end{bmatrix} \). Find the following: \[ A^{10}\vec{u} = \begin{bmatrix} \Box \\ \Box \end{bmatrix} \] \[ A^{10}\vec{v} = \begin{bmatrix} \Box \\ \Box \end{bmatrix} \] Question Help:
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps with 3 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,