Suppose A and B are square matrices of the same size. Which of the following are NOT necessarily true? (A + B)² = A² + 2AB + B² (A - B)² = A² − 2AB + B² □ A²B² = A(AB)B D(A + B)³ = A³+ B³ □ (A + B)(A − B) = A² – B² (AB)² = A²B² □ (A + B)² = A²+ AB + BA + B²
Suppose A and B are square matrices of the same size. Which of the following are NOT necessarily true? (A + B)² = A² + 2AB + B² (A - B)² = A² − 2AB + B² □ A²B² = A(AB)B D(A + B)³ = A³+ B³ □ (A + B)(A − B) = A² – B² (AB)² = A²B² □ (A + B)² = A²+ AB + BA + B²
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
Homework 12:
Question 3
![Suppose A and B are square matrices of the same size. Which of the following are NOT necessarily
true?
□ (A + B)² = A² + 2AB + B²
(A - B)² = A² - 2AB + B²
□ A²B² = A(AB)B
3
O(A + B)³ = A³ + B³
□ (A + B)(A − B) = A² – B²
□ (AB)² = A²B²
□ (A + B)² = A²+ AB + BA + B²](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F9086a1c0-d376-4c80-871f-f484ad7b10c1%2F1ad1e2b2-5472-4873-92e2-5477ad7f4a5a%2Fc6l2w9a_processed.png&w=3840&q=75)
Transcribed Image Text:Suppose A and B are square matrices of the same size. Which of the following are NOT necessarily
true?
□ (A + B)² = A² + 2AB + B²
(A - B)² = A² - 2AB + B²
□ A²B² = A(AB)B
3
O(A + B)³ = A³ + B³
□ (A + B)(A − B) = A² – B²
□ (AB)² = A²B²
□ (A + B)² = A²+ AB + BA + B²
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 3 steps with 3 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Mathematics For Machine Technology](https://www.bartleby.com/isbn_cover_images/9781337798310/9781337798310_smallCoverImage.jpg)
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
![Basic Technical Mathematics](https://www.bartleby.com/isbn_cover_images/9780134437705/9780134437705_smallCoverImage.gif)
![Topology](https://www.bartleby.com/isbn_cover_images/9780134689517/9780134689517_smallCoverImage.gif)