Suppose 0 x € (-∞, 0] A: f(x) = {{ x² x € (0,1) - 1 x = [1, ∞) is the cumulative probability function of the random variable X. What is the probability density function f(x) of X? 0 D: f(x) = ²√x x ≤ (0,1) 1 x = [1, ∞) G: f(x): = x € (-∞, 0] 0 1 . پیا ہو F(x)= J: f(x) = B: f(x) = . x € (-∞, 0] x = (0,1) x € [1, ∞) 0 √x 1 2 0 1 1 x € (-∞, 0] x = (0,1) x = [1, ∞) 0 E: f(x) = 2√x x H: f(x) = x € (-∞, 0] x = (0,1) x = [1, ∞) = {√F & € (0,1), K: f(x) = 0 else 2x2 3 0 x € (-∞, 0] x = (0,1) x = [1, ∞) " 0 C: f(x) = else . x ≤ (0,1)¸ I: ƒ(x) = else F: f(x) = 0 - {³ 3 x x € (-∞, 0] x = (0, 1) x = [1, ∞) 2√√x 0 Jo LIVE L: Neither x € (0,1) else x≤0 x>0

A First Course in Probability (10th Edition)
10th Edition
ISBN:9780134753119
Author:Sheldon Ross
Publisher:Sheldon Ross
Chapter1: Combinatorial Analysis
Section: Chapter Questions
Problem 1.1P: a. How many different 7-place license plates are possible if the first 2 places are for letters and...
icon
Related questions
Question

choose correct options?

Suppose
{
A: f(x) =
is the cumulative probability function of the random variable X. What is the probability density
function f(x) of X?
D: f(x) =
0
x ²7
G: f(x)
1
x = (-∞, 0]
x = (0, 1)
x = [1, ∞)
0
1
2√√x
1
x € (-∞, 0]
x = (0, 1)
x = [1, ∞)
0
2
√√x
J: f(x)
2
F(x):
S√x
0
B: f(x) =
x € (-∞, 0]
x = (0, 1)
x = [1, ∞)
E: f(x):
2
0
√x
1
x = (0, 1)
else
H: f(x)
"
0
√x
1
x € (-∞, 0]
x = (0,1)
x = [1, ∞)
=
x € (-∞0,0]
x = (0, 1)
x = [1, ∞)
0
1
2√√x
X
2.x²
3
0
K: f(x) =
x € (-∞, 0]
x = (0,1)
x € [1, ∞0)
{
2
2
√x
x = (0,1)
else
0
C: f(x) =
"
0
G
3
X
F: f(x) =
I: f(x) =
x € (0,1)
else
x € (-∞, 0]
x = (0,1)
x = [1, ∞)
1
2√x
0
0
L: Neither
x = (0, 1)
else
x ≤0
x>0
Transcribed Image Text:Suppose { A: f(x) = is the cumulative probability function of the random variable X. What is the probability density function f(x) of X? D: f(x) = 0 x ²7 G: f(x) 1 x = (-∞, 0] x = (0, 1) x = [1, ∞) 0 1 2√√x 1 x € (-∞, 0] x = (0, 1) x = [1, ∞) 0 2 √√x J: f(x) 2 F(x): S√x 0 B: f(x) = x € (-∞, 0] x = (0, 1) x = [1, ∞) E: f(x): 2 0 √x 1 x = (0, 1) else H: f(x) " 0 √x 1 x € (-∞, 0] x = (0,1) x = [1, ∞) = x € (-∞0,0] x = (0, 1) x = [1, ∞) 0 1 2√√x X 2.x² 3 0 K: f(x) = x € (-∞, 0] x = (0,1) x € [1, ∞0) { 2 2 √x x = (0,1) else 0 C: f(x) = " 0 G 3 X F: f(x) = I: f(x) = x € (0,1) else x € (-∞, 0] x = (0,1) x = [1, ∞) 1 2√x 0 0 L: Neither x = (0, 1) else x ≤0 x>0
Expert Solution
steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Recommended textbooks for you
A First Course in Probability (10th Edition)
A First Course in Probability (10th Edition)
Probability
ISBN:
9780134753119
Author:
Sheldon Ross
Publisher:
PEARSON
A First Course in Probability
A First Course in Probability
Probability
ISBN:
9780321794772
Author:
Sheldon Ross
Publisher:
PEARSON