Suppose 0 x € (-∞, 0] A: f(x) = {{ x² x € (0,1) - 1 x = [1, ∞) is the cumulative probability function of the random variable X. What is the probability density function f(x) of X? 0 D: f(x) = ²√x x ≤ (0,1) 1 x = [1, ∞) G: f(x): = x € (-∞, 0] 0 1 . پیا ہو F(x)= J: f(x) = B: f(x) = . x € (-∞, 0] x = (0,1) x € [1, ∞) 0 √x 1 2 0 1 1 x € (-∞, 0] x = (0,1) x = [1, ∞) 0 E: f(x) = 2√x x H: f(x) = x € (-∞, 0] x = (0,1) x = [1, ∞) = {√F & € (0,1), K: f(x) = 0 else 2x2 3 0 x € (-∞, 0] x = (0,1) x = [1, ∞) " 0 C: f(x) = else . x ≤ (0,1)¸ I: ƒ(x) = else F: f(x) = 0 - {³ 3 x x € (-∞, 0] x = (0, 1) x = [1, ∞) 2√√x 0 Jo LIVE L: Neither x € (0,1) else x≤0 x>0
Suppose 0 x € (-∞, 0] A: f(x) = {{ x² x € (0,1) - 1 x = [1, ∞) is the cumulative probability function of the random variable X. What is the probability density function f(x) of X? 0 D: f(x) = ²√x x ≤ (0,1) 1 x = [1, ∞) G: f(x): = x € (-∞, 0] 0 1 . پیا ہو F(x)= J: f(x) = B: f(x) = . x € (-∞, 0] x = (0,1) x € [1, ∞) 0 √x 1 2 0 1 1 x € (-∞, 0] x = (0,1) x = [1, ∞) 0 E: f(x) = 2√x x H: f(x) = x € (-∞, 0] x = (0,1) x = [1, ∞) = {√F & € (0,1), K: f(x) = 0 else 2x2 3 0 x € (-∞, 0] x = (0,1) x = [1, ∞) " 0 C: f(x) = else . x ≤ (0,1)¸ I: ƒ(x) = else F: f(x) = 0 - {³ 3 x x € (-∞, 0] x = (0, 1) x = [1, ∞) 2√√x 0 Jo LIVE L: Neither x € (0,1) else x≤0 x>0
A First Course in Probability (10th Edition)
10th Edition
ISBN:9780134753119
Author:Sheldon Ross
Publisher:Sheldon Ross
Chapter1: Combinatorial Analysis
Section: Chapter Questions
Problem 1.1P: a. How many different 7-place license plates are possible if the first 2 places are for letters and...
Related questions
Question
choose correct options?
![Suppose
{
A: f(x) =
is the cumulative probability function of the random variable X. What is the probability density
function f(x) of X?
D: f(x) =
0
x ²7
G: f(x)
1
x = (-∞, 0]
x = (0, 1)
x = [1, ∞)
0
1
2√√x
1
x € (-∞, 0]
x = (0, 1)
x = [1, ∞)
0
2
√√x
J: f(x)
2
F(x):
S√x
0
B: f(x) =
x € (-∞, 0]
x = (0, 1)
x = [1, ∞)
E: f(x):
2
0
√x
1
x = (0, 1)
else
H: f(x)
"
0
√x
1
x € (-∞, 0]
x = (0,1)
x = [1, ∞)
=
x € (-∞0,0]
x = (0, 1)
x = [1, ∞)
0
1
2√√x
X
2.x²
3
0
K: f(x) =
x € (-∞, 0]
x = (0,1)
x € [1, ∞0)
{
2
2
√x
x = (0,1)
else
0
C: f(x) =
"
0
G
3
X
F: f(x) =
I: f(x) =
x € (0,1)
else
x € (-∞, 0]
x = (0,1)
x = [1, ∞)
1
2√x
0
0
L: Neither
x = (0, 1)
else
x ≤0
x>0](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2Fdc904411-031f-4fa6-bfe9-2056c4138229%2F9ebc59bc-3e0b-4455-a8c3-b5ec1e580d86%2Fl1swzfo_processed.png&w=3840&q=75)
Transcribed Image Text:Suppose
{
A: f(x) =
is the cumulative probability function of the random variable X. What is the probability density
function f(x) of X?
D: f(x) =
0
x ²7
G: f(x)
1
x = (-∞, 0]
x = (0, 1)
x = [1, ∞)
0
1
2√√x
1
x € (-∞, 0]
x = (0, 1)
x = [1, ∞)
0
2
√√x
J: f(x)
2
F(x):
S√x
0
B: f(x) =
x € (-∞, 0]
x = (0, 1)
x = [1, ∞)
E: f(x):
2
0
√x
1
x = (0, 1)
else
H: f(x)
"
0
√x
1
x € (-∞, 0]
x = (0,1)
x = [1, ∞)
=
x € (-∞0,0]
x = (0, 1)
x = [1, ∞)
0
1
2√√x
X
2.x²
3
0
K: f(x) =
x € (-∞, 0]
x = (0,1)
x € [1, ∞0)
{
2
2
√x
x = (0,1)
else
0
C: f(x) =
"
0
G
3
X
F: f(x) =
I: f(x) =
x € (0,1)
else
x € (-∞, 0]
x = (0,1)
x = [1, ∞)
1
2√x
0
0
L: Neither
x = (0, 1)
else
x ≤0
x>0
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 2 steps with 2 images

Recommended textbooks for you

A First Course in Probability (10th Edition)
Probability
ISBN:
9780134753119
Author:
Sheldon Ross
Publisher:
PEARSON


A First Course in Probability (10th Edition)
Probability
ISBN:
9780134753119
Author:
Sheldon Ross
Publisher:
PEARSON
