Suposse that {V1, V2, ..., Vp} is a basis for a subspace W, and suppose that v = a1V1+@2V2++a,Vp. Show that this representation of v is unique respect to this basis, this is, if v = v = b1V1 + b2v2 + ...+ b,Vp, then a1 = b1, a2 = b2, ... , ap = bp. %3D
Suposse that {V1, V2, ..., Vp} is a basis for a subspace W, and suppose that v = a1V1+@2V2++a,Vp. Show that this representation of v is unique respect to this basis, this is, if v = v = b1V1 + b2v2 + ...+ b,Vp, then a1 = b1, a2 = b2, ... , ap = bp. %3D
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
Really need help with steps so I may understand
![Suposse that {V1, V2, . .. , Vp} is a basis for a subspace W, and suppose that v = a¡V1+ª2V2+•·+a,Vp.
Show that this representation of v is unique respect to this basis, this is, if v = v = b¡V1 + b2V2 +
+b,Vp, then a1 = b1, a2 = b2, ... , ap = bp-
..](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2Fbb7f1ce8-2552-49b5-ba1d-534a58de11ae%2Fc82b31a6-afb7-479e-b022-cc93c2603f25%2Foq2qhyk_processed.jpeg&w=3840&q=75)
Transcribed Image Text:Suposse that {V1, V2, . .. , Vp} is a basis for a subspace W, and suppose that v = a¡V1+ª2V2+•·+a,Vp.
Show that this representation of v is unique respect to this basis, this is, if v = v = b¡V1 + b2V2 +
+b,Vp, then a1 = b1, a2 = b2, ... , ap = bp-
..
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
Step 1
Step by step
Solved in 2 steps with 2 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Mathematics For Machine Technology](https://www.bartleby.com/isbn_cover_images/9781337798310/9781337798310_smallCoverImage.jpg)
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
![Basic Technical Mathematics](https://www.bartleby.com/isbn_cover_images/9780134437705/9780134437705_smallCoverImage.gif)
![Topology](https://www.bartleby.com/isbn_cover_images/9780134689517/9780134689517_smallCoverImage.gif)