sup{f(x) + g(x): x e X) < sup(f (x) : x e X} + sup(g(x): x e X) inf{f(x) : x e X} + inf{g(x): x e X) < ipf{f(x) +g(x) : x e X).

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
7. Let X be a nonempty set, and let f and g be defined on X and have bounded ranges in R. Show
that
sup{f(x) + g(x): x e X} < sup{f (x) : x e X} + sup{g(x) : x e X}
and that
inf{f(x): x € X} + inf{g(x) : x e X} < ipf{f(x) +g(x) : x e X}.
Give examples to show that each of these inequalities can be either equalities or strict inequalities.
Transcribed Image Text:7. Let X be a nonempty set, and let f and g be defined on X and have bounded ranges in R. Show that sup{f(x) + g(x): x e X} < sup{f (x) : x e X} + sup{g(x) : x e X} and that inf{f(x): x € X} + inf{g(x) : x e X} < ipf{f(x) +g(x) : x e X}. Give examples to show that each of these inequalities can be either equalities or strict inequalities.
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,