Sulfuryl chloride, SO2Cl2, is a highly reactive gaseous compound. When heated, it decomposes as follows: SO2Cl2(g) ® SO2(g) + Cl2(g). This decomposition is endothermic. A sample of 3.509 grams of SO2Cl2 is placed in an evacuated 1.00 liter bulb and the temperature is raised to 375K. (a) What would be the pressure in atmospheres in the bulb if no dissociation of the SO2Cl2(g) occurred? (b) When the system has come to equilibrium at 375K, the total pressure in the bulb is found to be 1.43 atmospheres. Calculate the partial pressures of SO2, Cl2, and SO2Cl2 at equilibrium at 375K. (c) Give the expression for the equilibrium constant (either Kp or Kc) for the decomposition of SO2Cl2(g) at 375K. Calculate the value of the equilibrium constant you have given, and specify its units. (d) If the temperature were raised to 500K, what effect would this have on the equilibrium constant? Explain briefly.
1) Sulfuryl chloride, SO2Cl2, is a highly reactive gaseous compound. When heated, it decomposes as follows: SO2Cl2(g) ® SO2(g) + Cl2(g). This decomposition is endothermic. A sample of 3.509 grams of SO2Cl2 is placed in an evacuated 1.00 liter bulb and the temperature is raised to 375K.
(a) What would be the pressure in atmospheres in the bulb if no dissociation of the SO2Cl2(g) occurred?
(b) When the system has come to equilibrium at 375K, the total pressure in the bulb is found to be 1.43 atmospheres. Calculate the partial pressures of SO2, Cl2, and SO2Cl2 at equilibrium at 375K.
(c) Give the expression for the equilibrium constant (either Kp or Kc) for the decomposition of SO2Cl2(g) at 375K. Calculate the value of the equilibrium constant you have given, and specify its units.
(d) If the temperature were raised to 500K, what effect would this have on the equilibrium constant? Explain briefly.
Note: Please answer just C and D. Thank you.
Trending now
This is a popular solution!
Step by step
Solved in 4 steps