Subatomic particles called pions are created when protons, accelerated to speeds very near c in a particle accelerator, smash into the nucleus of a target atom. Charged pions are unstable particles that decay into muons with a half-life of 1.8 x 10-8 s. Pions have been investigated for use in cancer treatment because they pass through tissue doing minimal damage until they decay, releasing significant energy at that point. The speed of the pions can be adjusted so that the most likely place for the decay is in a tumor.Suppose pions are created in an accelerator, then directed into a medical bay 30 m away. The pions travel at the very high speed of 0.99995c. Without time dilation, half of the pions would have decayed after traveling only 5.4 m, not far enough to make it to the medical bay. Time dilation allows them to survive long enough to reach the medical bay, enter tissue, slow down, and then decay where they are needed, in a tumor. The proton collision that creates the pion also creates a gamma-ray photon traveling in the same direction as the pion. The photon will get to the medical bay first because it is moving faster. What is the speed of the photon in the pion’s reference frame?A. 0.00005c       B. 0.5cC. 0.99995c       D. c

icon
Related questions
Question

Subatomic particles called pions are created when protons, accelerated to speeds very near c in a particle accelerator, smash into the nucleus of a target atom. Charged pions are unstable particles that decay into muons with a half-life of 1.8 x 10-8 s. Pions have been investigated for use in cancer treatment because they pass through tissue doing minimal damage until they decay, releasing significant energy at that point. The speed of the pions can be adjusted so that the most likely place for the decay is in a tumor.
Suppose pions are created in an accelerator, then directed into a medical bay 30 m away. The pions travel at the very high speed of 0.99995c. Without time dilation, half of the pions would have decayed after traveling only 5.4 m, not far enough to make it to the medical bay. Time dilation allows them to survive long enough to reach the medical bay, enter tissue, slow down, and then decay where they are needed, in a tumor.

The proton collision that creates the pion also creates a gamma-ray photon traveling in the same direction as the pion. The photon will get to the medical bay first because it is moving faster. What is the speed of the photon in the pion’s reference frame?
A. 0.00005c       B. 0.5c
C. 0.99995c       D. c

Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps

Blurred answer