Structural Verification Structural verification is, in this case, validating that a data structure is formed according to its specification. For this lab you are given an essentially arbitrary specification, but you could think of this being used to verify a data structure produced by a program that must have certain properties in order to be used correctly. For example, a list must not be circular, or an image file might require a particular header describing its contents. You must implement this function, which examines a matrix and ensures that it adheres to the following specification: bool verify_matrix(int x, int y, int **matrix); This function accepts an X dimension, a Y dimension, and a matrix of y rows and columns; although it is declared as int **, this is the same type of matrix as returned by parse_life() in PA1, and you should access it as a two-dimensional array. Note that it is stored in Y-major orientation; that is, matrix ranges from matrix[0][0] to matrix[y-1][× - 1] (again, as in PA1). You should verify the following properties: • The matrix is square. That is, its x dimension and y dimension are the same. Because there is no way in C to determine the size of an array, your function must consult its x and y arguments to verify this. • Every row in the matrix is sorted in non-decreasing order. This means that every element of each row is greater than or equal to the element in the previous index. • The first element of every row forms a sequence sorted in non-decreasing order. Like the individual rows, every element in the first column is greater than or equal to the element in the previous index. Your function should return true if the matrix satisfies these properties, and false if it does not. Your function most not attempt to access any array element that is outside of the specified dimensions — even if those dimensions are non-square.
Structural Verification Structural verification is, in this case, validating that a data structure is formed according to its specification. For this lab you are given an essentially arbitrary specification, but you could think of this being used to verify a data structure produced by a program that must have certain properties in order to be used correctly. For example, a list must not be circular, or an image file might require a particular header describing its contents. You must implement this function, which examines a matrix and ensures that it adheres to the following specification: bool verify_matrix(int x, int y, int **matrix); This function accepts an X dimension, a Y dimension, and a matrix of y rows and columns; although it is declared as int **, this is the same type of matrix as returned by parse_life() in PA1, and you should access it as a two-dimensional array. Note that it is stored in Y-major orientation; that is, matrix ranges from matrix[0][0] to matrix[y-1][× - 1] (again, as in PA1). You should verify the following properties: • The matrix is square. That is, its x dimension and y dimension are the same. Because there is no way in C to determine the size of an array, your function must consult its x and y arguments to verify this. • Every row in the matrix is sorted in non-decreasing order. This means that every element of each row is greater than or equal to the element in the previous index. • The first element of every row forms a sequence sorted in non-decreasing order. Like the individual rows, every element in the first column is greater than or equal to the element in the previous index. Your function should return true if the matrix satisfies these properties, and false if it does not. Your function most not attempt to access any array element that is outside of the specified dimensions — even if those dimensions are non-square.
Database System Concepts
7th Edition
ISBN:9780078022159
Author:Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Publisher:Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Chapter1: Introduction
Section: Chapter Questions
Problem 1PE
Related questions
Question
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 4 steps with 2 images
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, computer-science and related others by exploring similar questions and additional content below.Recommended textbooks for you
Database System Concepts
Computer Science
ISBN:
9780078022159
Author:
Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Publisher:
McGraw-Hill Education
Starting Out with Python (4th Edition)
Computer Science
ISBN:
9780134444321
Author:
Tony Gaddis
Publisher:
PEARSON
Digital Fundamentals (11th Edition)
Computer Science
ISBN:
9780132737968
Author:
Thomas L. Floyd
Publisher:
PEARSON
Database System Concepts
Computer Science
ISBN:
9780078022159
Author:
Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Publisher:
McGraw-Hill Education
Starting Out with Python (4th Edition)
Computer Science
ISBN:
9780134444321
Author:
Tony Gaddis
Publisher:
PEARSON
Digital Fundamentals (11th Edition)
Computer Science
ISBN:
9780132737968
Author:
Thomas L. Floyd
Publisher:
PEARSON
C How to Program (8th Edition)
Computer Science
ISBN:
9780133976892
Author:
Paul J. Deitel, Harvey Deitel
Publisher:
PEARSON
Database Systems: Design, Implementation, & Manag…
Computer Science
ISBN:
9781337627900
Author:
Carlos Coronel, Steven Morris
Publisher:
Cengage Learning
Programmable Logic Controllers
Computer Science
ISBN:
9780073373843
Author:
Frank D. Petruzella
Publisher:
McGraw-Hill Education