Stocks A and B have the following probability distributions of expected future returns: Probability A B 0.1 (10 %) (29 %) 0.1 3 0 0.5 11 19 0.2 22 28 0.1 33 40 A. Calculate the expected rate of return, , for Stock B ( = 12.50%.) Do not round intermediate calculations. Round your answer to two decimal places. % B. Calculate the standard deviation of expected returns, σA, for Stock A (σB = 17.86%.) Do not round intermediate calculations. Round your answer to two decimal places. % Now calculate the coefficient of variation for Stock B. Do not round intermediate calculations. Round your answer to two decimal places. Is it possible that most investors might regard Stock B as being less risky than Stock A? If Stock B is more highly correlated with the market than A, then it might have the same beta as Stock A, and hence be just as risky in a portfolio sense. If Stock B is less highly correlated with the market than A, then it might have a lower beta than Stock A, and hence be less risky in a portfolio sense. If Stock B is less highly correlated with the market than A, then it might have a higher beta than Stock A, and hence be more risky in a portfolio sense. If Stock B is more highly correlated with the market than A, then it might have a higher beta than Stock A, and hence be less risky in a portfolio sense. If Stock B is more highly correlated with the market than A, then it might have a lower beta than Stock A, and hence be less risky in a portfolio sense. C. Assume the risk-free rate is 1.5%. What are the Sharpe ratios for Stocks A and B? Do not round intermediate calculations. Round your answers to four decimal places. Stock A: Stock B: Are these calculations consistent with the information obtained from the coefficient of variation calculations in Part b? In a stand-alone risk sense A is more risky than B. If Stock B is less highly correlated with the market than A, then it might have a lower beta than Stock A, and hence be less risky in a portfolio sense. In a stand-alone risk sense A is more risky than B. If Stock B is less highly correlated with the market than A, then it might have a higher beta than Stock A, and hence be more risky in a portfolio sense. In a stand-alone risk sense A is less risky than B. If Stock B is more highly correlated with the market than A, then it might have the same beta as Stock A, and hence be just as risky in a portfolio sense. In a stand-alone risk sense A is less risky than B. If Stock B is less highly correlated with the market than A, then it might have a lower beta than Stock A, and hence be less risky in a portfolio sense. In a stand-alone risk sense A is less risky than B. If Stock B is less highly correlated with the market than A, then it might have a higher beta than Stock A, and hence be more risky in a portfolio sense.
Stocks A and B have the following probability distributions of expected future returns:
Probability | A | B | ||
0.1 | (10 | %) | (29 | %) |
0.1 | 3 | 0 | ||
0.5 | 11 | 19 | ||
0.2 | 22 | 28 | ||
0.1 | 33 | 40 |
A. Calculate the expected
%
B. Calculate the standard deviation of expected returns, σA, for Stock A (σB = 17.86%.) Do not round intermediate calculations. Round your answer to two decimal places.
%
Now calculate the coefficient of variation for Stock B. Do not round intermediate calculations. Round your answer to two decimal places.
Is it possible that most investors might regard Stock B as being less risky than Stock A?
- If Stock B is more highly correlated with the market than A, then it might have the same beta as Stock A, and hence be just as risky in a portfolio sense.
- If Stock B is less highly correlated with the market than A, then it might have a lower beta than Stock A, and hence be less risky in a portfolio sense.
- If Stock B is less highly correlated with the market than A, then it might have a higher beta than Stock A, and hence be more risky in a portfolio sense.
- If Stock B is more highly correlated with the market than A, then it might have a higher beta than Stock A, and hence be less risky in a portfolio sense.
- If Stock B is more highly correlated with the market than A, then it might have a lower beta than Stock A, and hence be less risky in a portfolio sense.
C. Assume the risk-free rate is 1.5%. What are the Sharpe ratios for Stocks A and B? Do not round intermediate calculations. Round your answers to four decimal places.
Stock A:
Stock B:
Are these calculations consistent with the information obtained from the coefficient of variation calculations in Part b?
-
- In a stand-alone risk sense A is more risky than B. If Stock B is less highly correlated with the market than A, then it might have a lower beta than Stock A, and hence be less risky in a portfolio sense.
- In a stand-alone risk sense A is more risky than B. If Stock B is less highly correlated with the market than A, then it might have a higher beta than Stock A, and hence be more risky in a portfolio sense.
- In a stand-alone risk sense A is less risky than B. If Stock B is more highly correlated with the market than A, then it might have the same beta as Stock A, and hence be just as risky in a portfolio sense.
- In a stand-alone risk sense A is less risky than B. If Stock B is less highly correlated with the market than A, then it might have a lower beta than Stock A, and hence be less risky in a portfolio sense.
- In a stand-alone risk sense A is less risky than B. If Stock B is less highly correlated with the market than A, then it might have a higher beta than Stock A, and hence be more risky in a portfolio sense.
![](/static/compass_v2/shared-icons/check-mark.png)
Trending now
This is a popular solution!
Step by step
Solved in 6 steps with 4 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
![Essentials Of Investments](https://compass-isbn-assets.s3.amazonaws.com/isbn_cover_images/9781260013924/9781260013924_smallCoverImage.jpg)
![FUNDAMENTALS OF CORPORATE FINANCE](https://www.bartleby.com/isbn_cover_images/9781260013962/9781260013962_smallCoverImage.gif)
![Financial Management: Theory & Practice](https://www.bartleby.com/isbn_cover_images/9781337909730/9781337909730_smallCoverImage.gif)
![Essentials Of Investments](https://compass-isbn-assets.s3.amazonaws.com/isbn_cover_images/9781260013924/9781260013924_smallCoverImage.jpg)
![FUNDAMENTALS OF CORPORATE FINANCE](https://www.bartleby.com/isbn_cover_images/9781260013962/9781260013962_smallCoverImage.gif)
![Financial Management: Theory & Practice](https://www.bartleby.com/isbn_cover_images/9781337909730/9781337909730_smallCoverImage.gif)
![Foundations Of Finance](https://www.bartleby.com/isbn_cover_images/9780134897264/9780134897264_smallCoverImage.gif)
![Fundamentals of Financial Management (MindTap Cou…](https://www.bartleby.com/isbn_cover_images/9781337395250/9781337395250_smallCoverImage.gif)
![Corporate Finance (The Mcgraw-hill/Irwin Series i…](https://www.bartleby.com/isbn_cover_images/9780077861759/9780077861759_smallCoverImage.gif)