Steps to Sketching the Sinusoidal Functions: 1. Lightly sketch the midline line y = D. The midline "splits" the graph into upper and lower halves. 2. Lightly sketch the horizontal lines y=D+A and y=D-A. These two lines determine a horizontal strip inside which the graph of the sinusoidal function will oscillate. Notice, the points where the sinusoidal function has a maximum value lie on the line y = D+ |A|. Likewise, the points where the sinusoidal function has a minimum value lie on the line y = D-|A|. 3. Lightly sketch the vertical lines at x = C and x=C+B. One cycle of the sinusoidal function will lie between these two lines. 4. Sketch one cycle of the sinusoidal function in the box created by steps 2 & 3. The important points (minimums, maximums, and crossing the midline) will 3 occur when x = C, C+÷B,C- C++ B,C + B,C + B, C+B. a. Sine, A > 0: mid-max - mid - min - mid Sine, A < 0: mid - min - mid - max - mid b. Cosine A > 0: max - mid- min - mid - max Cosine A < 0: min - mid-max - mid - min bbana 5. The fact that the function is periodic tells us to simply repeat the graph in th intervals C + B≤ x ≤ C+ 2B, C-B≤ x ≤ C, etc.
Steps to Sketching the Sinusoidal Functions: 1. Lightly sketch the midline line y = D. The midline "splits" the graph into upper and lower halves. 2. Lightly sketch the horizontal lines y=D+A and y=D-A. These two lines determine a horizontal strip inside which the graph of the sinusoidal function will oscillate. Notice, the points where the sinusoidal function has a maximum value lie on the line y = D+ |A|. Likewise, the points where the sinusoidal function has a minimum value lie on the line y = D-|A|. 3. Lightly sketch the vertical lines at x = C and x=C+B. One cycle of the sinusoidal function will lie between these two lines. 4. Sketch one cycle of the sinusoidal function in the box created by steps 2 & 3. The important points (minimums, maximums, and crossing the midline) will 3 occur when x = C, C+÷B,C- C++ B,C + B,C + B, C+B. a. Sine, A > 0: mid-max - mid - min - mid Sine, A < 0: mid - min - mid - max - mid b. Cosine A > 0: max - mid- min - mid - max Cosine A < 0: min - mid-max - mid - min bbana 5. The fact that the function is periodic tells us to simply repeat the graph in th intervals C + B≤ x ≤ C+ 2B, C-B≤ x ≤ C, etc.
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
100%
Expert Solution
Step 1: To find.
In this question, we will find the sinosoidal curve.
Step by step
Solved in 5 steps with 4 images
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,