Step 4 Finally, determine(-3x + 7) and (x + 7) and simplify the result. dx dx 1. du 1 dv + U dx V dx 1 d -3x + 7/dx 1 = (-3x+7) ([ -3x + 7) + h'(x)=[In[(-3x + 7)(x + 7)]] = dx + 1 X+7 1 X+7 =(x + 7) dx 1 ]) + (x + 7) (¹) -3x + 7 Therefore, if h(x) = In[(-3x + 7)(x + 7)], then we have the following result.

Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
icon
Related questions
Question
**Step 4**

Finally, determine \( \frac{d}{dx}(-3x + 7) \) and \( \frac{d}{dx}(x + 7) \) and simplify the result.

\[
\frac{1}{u} \cdot \frac{du}{dx} + \frac{1}{v} \cdot \frac{dv}{dx} = \left( \frac{1}{-3x + 7} \right) \left( \frac{d}{dx}(-3x + 7) \right) + \left( \frac{1}{x + 7} \right) \left( \frac{d}{dx}(x + 7) \right)
\]

\[
= \left( \frac{1}{-3x + 7} \right)(\underline{\hspace{1cm}}) + \left( \frac{1}{x + 7} \right)(1)
\]

\[
= \frac{\underline{\hspace{0.5cm}}}{-3x + 7} + \frac{1}{x + 7}
\]

Therefore, if \( h(x) = \ln[(-3x + 7)(x + 7)] \), then we have the following result.

\[
h'(x) = \frac{d}{dx} [ \ln[(-3x + 7)(x + 7)] ] = \underline{\hspace{3cm}}
\]
Transcribed Image Text:**Step 4** Finally, determine \( \frac{d}{dx}(-3x + 7) \) and \( \frac{d}{dx}(x + 7) \) and simplify the result. \[ \frac{1}{u} \cdot \frac{du}{dx} + \frac{1}{v} \cdot \frac{dv}{dx} = \left( \frac{1}{-3x + 7} \right) \left( \frac{d}{dx}(-3x + 7) \right) + \left( \frac{1}{x + 7} \right) \left( \frac{d}{dx}(x + 7) \right) \] \[ = \left( \frac{1}{-3x + 7} \right)(\underline{\hspace{1cm}}) + \left( \frac{1}{x + 7} \right)(1) \] \[ = \frac{\underline{\hspace{0.5cm}}}{-3x + 7} + \frac{1}{x + 7} \] Therefore, if \( h(x) = \ln[(-3x + 7)(x + 7)] \), then we have the following result. \[ h'(x) = \frac{d}{dx} [ \ln[(-3x + 7)(x + 7)] ] = \underline{\hspace{3cm}} \]
Expert Solution
Step 1

formulas we use:

ddxf+g=dfdx+dgdxddxkx=k; k is a constant.dkdx=0; k is constant.ddx(x)=1.

 

steps

Step by step

Solved in 2 steps with 1 images

Blurred answer
Recommended textbooks for you
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
Thomas' Calculus (14th Edition)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
Calculus: Early Transcendentals (3rd Edition)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
Precalculus
Precalculus
Calculus
ISBN:
9780135189405
Author:
Michael Sullivan
Publisher:
PEARSON
Calculus: Early Transcendental Functions
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning