Step 1: Solution-(1) Given: For R = [0,1] × [0,1] 2 I = √ √(xy)² cos(x³)dxdy R Our aim is to evaluate the given integral Step 2: Calculation: I = S√(xy)² cos(x³)dxdy R I = S₁₂ f₁ x² y² cos(x³) dxdy I = (f²x² cos(x³ ) d x) (f₁ y²dy) = Let x³ 3 t⇒ 3x² dx = dt f₁² fox² cos(x³) dx = cos(t)dt fox² cos(x³)dx = (sint) | So x² cos(x3)dx=(sin1 - sin0) Sox2 cos(x³)dx x² cos(x³)dx = (sin1 - 0) sin1 = 3 So y²dy = (5) 1 0 So y² dy = -0 = 1/3 Hence we get: I 3 = (sinl) (½³) = (sinl) 9
Step 1: Solution-(1) Given: For R = [0,1] × [0,1] 2 I = √ √(xy)² cos(x³)dxdy R Our aim is to evaluate the given integral Step 2: Calculation: I = S√(xy)² cos(x³)dxdy R I = S₁₂ f₁ x² y² cos(x³) dxdy I = (f²x² cos(x³ ) d x) (f₁ y²dy) = Let x³ 3 t⇒ 3x² dx = dt f₁² fox² cos(x³) dx = cos(t)dt fox² cos(x³)dx = (sint) | So x² cos(x3)dx=(sin1 - sin0) Sox2 cos(x³)dx x² cos(x³)dx = (sin1 - 0) sin1 = 3 So y²dy = (5) 1 0 So y² dy = -0 = 1/3 Hence we get: I 3 = (sinl) (½³) = (sinl) 9
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
Where the 1/3 come from pls explain?
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 2 steps with 1 images
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,