Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
Related questions
Question
![### Determining the Range of the Function
In this task, you are asked to determine the range for the function \( f(x) = -\ln(x - 1) + 2 \). Below the problem statement, there are four multiple-choice options.
#### Problem Statement:
**State the range for the function \( f(x) = -\ln(x - 1) + 2 \):**
#### Options:
- \(\circ\) \((-\infty, \infty)\)
- \(\circ\) \((-\infty, -1)\)
- \(\circ\) \((0, \infty)\)
- \(\circ\) \((-\infty, 0)\)
### Explanation of the Function's Behavior
The given function is \( f(x) = -\ln(x - 1) + 2 \).
1. **Domain**: First, we identify the domain of the function \( \ln(x - 1) \), which is valid for \( x - 1 > 0 \) or \( x > 1 \).
2. **Analysis of \( -\ln(x - 1) \)**:
- As \( x \) approaches \( 1 \) from the right (\( x \to 1^+ \)), \( \ln(x - 1) \to -\infty \), so \( -\ln(x - 1) \to \infty \).
- As \( x \) increases, \( \ln(x - 1) \) becomes larger, and nearing infinity, \( -\ln(x - 1) \to -\infty \).
3. **Shifting by 2**:
- \( f(x) \) shifts the \( -\ln(x - 1) \) function up by 2 units.
- Therefore, the range of \( f(x) \) is moved up by 2 units along the y-axis.
### Determining the Range:
From the behavior of \( -\ln(x - 1) \):
- When \( x = 1 \), \( f(x) \) tends towards \( \infty \).
- As \( x \to \infty \), \( f(x) \to -\infty + 2 = -\infty \).
Thus, the range of the function \( f(x) = -\](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F9a0ef19f-ddd7-4097-8a73-7e4131c94f7c%2F8c2563bc-520e-4706-b7cd-75c7e0ec4add%2F0jv80x_processed.jpeg&w=3840&q=75)
Transcribed Image Text:### Determining the Range of the Function
In this task, you are asked to determine the range for the function \( f(x) = -\ln(x - 1) + 2 \). Below the problem statement, there are four multiple-choice options.
#### Problem Statement:
**State the range for the function \( f(x) = -\ln(x - 1) + 2 \):**
#### Options:
- \(\circ\) \((-\infty, \infty)\)
- \(\circ\) \((-\infty, -1)\)
- \(\circ\) \((0, \infty)\)
- \(\circ\) \((-\infty, 0)\)
### Explanation of the Function's Behavior
The given function is \( f(x) = -\ln(x - 1) + 2 \).
1. **Domain**: First, we identify the domain of the function \( \ln(x - 1) \), which is valid for \( x - 1 > 0 \) or \( x > 1 \).
2. **Analysis of \( -\ln(x - 1) \)**:
- As \( x \) approaches \( 1 \) from the right (\( x \to 1^+ \)), \( \ln(x - 1) \to -\infty \), so \( -\ln(x - 1) \to \infty \).
- As \( x \) increases, \( \ln(x - 1) \) becomes larger, and nearing infinity, \( -\ln(x - 1) \to -\infty \).
3. **Shifting by 2**:
- \( f(x) \) shifts the \( -\ln(x - 1) \) function up by 2 units.
- Therefore, the range of \( f(x) \) is moved up by 2 units along the y-axis.
### Determining the Range:
From the behavior of \( -\ln(x - 1) \):
- When \( x = 1 \), \( f(x) \) tends towards \( \infty \).
- As \( x \to \infty \), \( f(x) \to -\infty + 2 = -\infty \).
Thus, the range of the function \( f(x) = -\
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 3 steps with 1 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Calculus: Early Transcendentals](https://www.bartleby.com/isbn_cover_images/9781285741550/9781285741550_smallCoverImage.gif)
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
![Thomas' Calculus (14th Edition)](https://www.bartleby.com/isbn_cover_images/9780134438986/9780134438986_smallCoverImage.gif)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
![Calculus: Early Transcendentals (3rd Edition)](https://www.bartleby.com/isbn_cover_images/9780134763644/9780134763644_smallCoverImage.gif)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
![Calculus: Early Transcendentals](https://www.bartleby.com/isbn_cover_images/9781285741550/9781285741550_smallCoverImage.gif)
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
![Thomas' Calculus (14th Edition)](https://www.bartleby.com/isbn_cover_images/9780134438986/9780134438986_smallCoverImage.gif)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
![Calculus: Early Transcendentals (3rd Edition)](https://www.bartleby.com/isbn_cover_images/9780134763644/9780134763644_smallCoverImage.gif)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
![Calculus: Early Transcendentals](https://www.bartleby.com/isbn_cover_images/9781319050740/9781319050740_smallCoverImage.gif)
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
![Precalculus](https://www.bartleby.com/isbn_cover_images/9780135189405/9780135189405_smallCoverImage.gif)
![Calculus: Early Transcendental Functions](https://www.bartleby.com/isbn_cover_images/9781337552516/9781337552516_smallCoverImage.gif)
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning