State the definition of a Riemann sum and the definition of what it means for a function to be Riemann integrable.

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

1 please

1. State the definition of a Riemann sum and the definition of what it means for a function to be Riemann integrable.

2. Let \( S(f, P) \) denote the upper Darboux sum of \( f \) with partition \( P \). Prove that if \( Q \) is a refinement of \( P \), then \( S(f, Q) \leq S(f, P) \).

3. Let \( f : [0, 1] \rightarrow \mathbb{R} \) be defined by

\[
f(x) = 
\begin{cases} 
0 & \text{if } x \leq \frac{1}{2} \\ 
1 & \text{if } x > \frac{1}{2}. 
\end{cases}
\]

Let \( \epsilon > 0 \). Prove that there exists a partition, \( P \), of \([0, 1]\) with

\[
S(f, P) - s(f, P) < \epsilon.
\]

What can you conclude about \( f \)?
Transcribed Image Text:1. State the definition of a Riemann sum and the definition of what it means for a function to be Riemann integrable. 2. Let \( S(f, P) \) denote the upper Darboux sum of \( f \) with partition \( P \). Prove that if \( Q \) is a refinement of \( P \), then \( S(f, Q) \leq S(f, P) \). 3. Let \( f : [0, 1] \rightarrow \mathbb{R} \) be defined by \[ f(x) = \begin{cases} 0 & \text{if } x \leq \frac{1}{2} \\ 1 & \text{if } x > \frac{1}{2}. \end{cases} \] Let \( \epsilon > 0 \). Prove that there exists a partition, \( P \), of \([0, 1]\) with \[ S(f, P) - s(f, P) < \epsilon. \] What can you conclude about \( f \)?
Expert Solution
steps

Step by step

Solved in 3 steps with 2 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,