SSR is defined by SSR = E9 - 9). Prove %3D (1) SSR = 3} S.z- (2) E(SSR) = o + Bị Sr. (3) Show MSR ~ Xỉ under Ho: Bi = 0. %3D

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
SSR is defined by SSR = E ( - 9). Prove
(1) SSR = 3 S.
(2) E(SSR) = o + B} S.
(3) Show
Y under Ho : B1 = 0.
Transcribed Image Text:SSR is defined by SSR = E ( - 9). Prove (1) SSR = 3 S. (2) E(SSR) = o + B} S. (3) Show Y under Ho : B1 = 0.
Expert Solution
Step 1

Given, SSR=i=1ny^i-y¯2.

The fitted equation of yi=β0+β1xi+εi is  y^i=β^0+β^1xi, for i=1,2,...,n.

yi is the response variableβ0 is the interceptβ1 is the slopexi is the regressor variableεi is the random error

y^i is the fitted or predicted response variableβ^0 is the least square estimate of β0β^1 is the least square estimate of β1

The normal equations are:

β^0=y¯-β^1x¯β^1=i=1nyi-y¯xi-x¯i=1nxi-x¯2=SxySxx

y¯ is the mean or average, y¯=i=1nyin, which implies:

y¯=i=1nβ0+β1xi+εin=i=1nβ0n+i=1nβ1xin+i=1nεin=nβ0n+β1i=1nxin+i=1nεin=β0+β1x¯+ε¯

trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,