'SSP b1 Minimize z = 0.6x1 +0.35x2 subject to: 5x1 +7x2 2 8 4x1+ 2x2 2 15 2x1 + x2 2 3 x1 2 0, x2 2 0. Q2 Maximize Z = 250x+ 75y subject to the constraints: 5x + ys 100 X+y< 60 x2 0, y 2 0 Q3 maximize -x1 + 3x2-3x3 subject to 3x1– x2 - 2x3 <7 -2x1 - 4x2 + 4x3 < 3 x1 - 2x3 < 4 -2x1 + 2x2 + x3 < 8 3x1 <5 x1, x2, x3 2 0.

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
Linear Programming ass.
b1
Minimize z = 0.6x1 + 0.35x2
subject to:
5x1 +7x2 2 8
4x1 + 2x2 2 15
2x1+ x2 2 3
x1 2 0, x2 2 0.
Q2
Maximize Z = 250x +75y
subject to the constraints:
5x + ys 100
X+ys 60
X2 0, y 20
Q3
maximize -x1+ 3x2 - 3x3
subject to 3x1- x2 - 2x3 <7
-2x1-4x2 + 4x3 <3
x1 - 2x3 <4
-2x1 + 2x2 + x3 < 8
3x1 <5
x1, x2, x3 2 0.
Transcribed Image Text:Linear Programming ass. b1 Minimize z = 0.6x1 + 0.35x2 subject to: 5x1 +7x2 2 8 4x1 + 2x2 2 15 2x1+ x2 2 3 x1 2 0, x2 2 0. Q2 Maximize Z = 250x +75y subject to the constraints: 5x + ys 100 X+ys 60 X2 0, y 20 Q3 maximize -x1+ 3x2 - 3x3 subject to 3x1- x2 - 2x3 <7 -2x1-4x2 + 4x3 <3 x1 - 2x3 <4 -2x1 + 2x2 + x3 < 8 3x1 <5 x1, x2, x3 2 0.
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 5 steps with 4 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,