Spring is a peak time for selling houses. The file Spring Houses contains the selling price, number of bathrooms, square footage, and number of bedrooms of 26 homes sold in Ft. Thomas, Kentucky, in spring 2018 (realtor.com website) Click on the datafile logo to reference the data. DATA file a. The Excel output for the estimated regression equation that can be used to predict the selling price given the number of bathrooms, square footage, and number of bedrooms in the house: SUMMARY OUTPUT Regression statistics Multiple R R Square Adjusted R Square Standard Error Observations ANOVA Regression Residual Total 0.7429 0.5519 0.4907 61948.6931 Intercept Baths df 26 SS MS 3 1.0397E+11 3.4656E+10 22 8.4428E+10 3.8376E+09 25 1.8840E+11 Coefficients Standard Error -5531.0144 67312.9506 -1386.2100 23143.8052 23.5813 60.2793 54797.0778 24019.7592 t Stat F 9.0306E+00 Lower 95% Upper 95% -0.0822 0.9353 -145129.5298 134067.5011 -0.0599 0.9528 -49383.5243 46611.1044 Sq Ft 2.5562 0.0180 11.3748 109.1838 Beds 2.2813 0.0326 4983.1461 104611.0095 Does the estimated regression equation provide a good fit to the data? Explain. Hint: If R is greater than 45%, the estimated regression equation provides a good fit. The estimated regression equation does (to 2 decimals). provide a reasonable fit because the adjusted R² is 0.4907 b. The Excel output for the estimated regression equation that can be used to predict selling price given square footage and the number of bedrooms: SUMMARY OUTPUT P-value Significance F 4.3455E-04

MATLAB: An Introduction with Applications
6th Edition
ISBN:9781119256830
Author:Amos Gilat
Publisher:Amos Gilat
Chapter1: Starting With Matlab
Section: Chapter Questions
Problem 1P
icon
Related questions
Question

fix whats wrong please

 

**Spring Houses: Predicting Selling Prices Using Regression Analysis**

Spring is a peak time for selling houses. The dataset, *SpringHouses*, contains information about the selling price, number of bathrooms, square footage, and number of bedrooms of 26 homes sold in Ft. Thomas, Kentucky, in spring 2018 (sourced from realtor.com).

**Data File:**
[DATAfile logo]

### a. Estimated Regression Equation for Selling Price
The regression analysis output used to predict the selling price based on the number of bathrooms, square footage, and number of bedrooms is as follows:

**SUMMARY OUTPUT**

**Regression Statistics:**
- Multiple R: 0.7429
- R Square: 0.5519
- Adjusted R Square: 0.4907
- Standard Error: 61948.6931
- Observations: 26

**ANOVA (Analysis of Variance):**

| Source       | df | SS           | MS          | F         | Significance F |
|--------------|----|--------------|-------------|-----------|----------------|
| Regression   | 3  | 1.0397E+11   | 3.4656E+10  | 9.0306    | 4.3455E-04     |
| Residual     | 22 | 8.4428E+10   | 3.8376E+09  |           |                |
| Total        | 25 | 1.8840E+11   |             |           |                |

**Coefficients:**

| Term       | Coefficient | Standard Error | t Stat | P-value | Lower 95%    | Upper 95%    |
|------------|-------------|----------------|--------|---------|--------------|--------------|
| Intercept  | -5531.0144  | 67312.9506     | -0.0822| 0.9353  | -145129.5298 | 134067.5011  |
| Baths      | -1386.2100  | 23143.8052     | -0.0599| 0.9528  | -49383.5243  | 46611.1044   |
| Sq Ft      | 60.2793     | 23.5813        | 2.5562 | 0.0180  | 11
Transcribed Image Text:**Spring Houses: Predicting Selling Prices Using Regression Analysis** Spring is a peak time for selling houses. The dataset, *SpringHouses*, contains information about the selling price, number of bathrooms, square footage, and number of bedrooms of 26 homes sold in Ft. Thomas, Kentucky, in spring 2018 (sourced from realtor.com). **Data File:** [DATAfile logo] ### a. Estimated Regression Equation for Selling Price The regression analysis output used to predict the selling price based on the number of bathrooms, square footage, and number of bedrooms is as follows: **SUMMARY OUTPUT** **Regression Statistics:** - Multiple R: 0.7429 - R Square: 0.5519 - Adjusted R Square: 0.4907 - Standard Error: 61948.6931 - Observations: 26 **ANOVA (Analysis of Variance):** | Source | df | SS | MS | F | Significance F | |--------------|----|--------------|-------------|-----------|----------------| | Regression | 3 | 1.0397E+11 | 3.4656E+10 | 9.0306 | 4.3455E-04 | | Residual | 22 | 8.4428E+10 | 3.8376E+09 | | | | Total | 25 | 1.8840E+11 | | | | **Coefficients:** | Term | Coefficient | Standard Error | t Stat | P-value | Lower 95% | Upper 95% | |------------|-------------|----------------|--------|---------|--------------|--------------| | Intercept | -5531.0144 | 67312.9506 | -0.0822| 0.9353 | -145129.5298 | 134067.5011 | | Baths | -1386.2100 | 23143.8052 | -0.0599| 0.9528 | -49383.5243 | 46611.1044 | | Sq Ft | 60.2793 | 23.5813 | 2.5562 | 0.0180 | 11
### Chapter 15 Assignment

#### Regression Analysis: Output Interpretation

**a. Question:** Does the estimated regression equation provide a good fit to the data? Explain. 
   *Hint: If Adjusted \( R^2 \) is greater than 45%, the estimated regression equation provides a good fit.*

**Answer:** 
The estimated regression equation **does** provide a reasonable fit because the adjusted \( R^2 \) is **0.4907** (to 2 decimals).

**b. Question:** The Excel output for the estimated regression equation that can be used to predict the selling price given square footage and the number of bedrooms: 

### Summary Output

**Regression Statistics:**

|Metric                | Value    |
|----------------------|----------|
|Multiple R            | 0.7428   |
|R Square              | 0.5518   |
|Adjusted R Square     | 0.5128   |
|Standard Error        | 60591.9567 |
|Observations          | 26       |

**ANOVA Table:**

|                    | df | SS           | MS             | F           | Significance F   |
|--------------------|----|--------------|----------------|-------------|------------------|
|Regression          | 2  | 1.03955E+11  | 51977265516    | 14.15739901 | 9.81929E-05      |
|Residual            | 23 | 84441860122  | 3671385223     |             |                  |
|Total               | 25 | 1.88396E+11  |                |             |                  |

**Coefficients:**

|Variable            | Coefficients | Standard Error | t Stat | P-value | Lower 95% | Upper 95%   |
|--------------------|--------------|----------------|--------|---------|-----------|-------------|
|Intercept           | -5882.7622   | 65587.6835     | -0.0897| 0.9293  | -141561.2229 | 129795.6985 |
|Sq Ft               | 59.7331      | 21.2707        | 2.8082 | 0.0100  | 15.7313    | 103.7349    |
|Beds                | 54309.2083   | 22101.623
Transcribed Image Text:### Chapter 15 Assignment #### Regression Analysis: Output Interpretation **a. Question:** Does the estimated regression equation provide a good fit to the data? Explain. *Hint: If Adjusted \( R^2 \) is greater than 45%, the estimated regression equation provides a good fit.* **Answer:** The estimated regression equation **does** provide a reasonable fit because the adjusted \( R^2 \) is **0.4907** (to 2 decimals). **b. Question:** The Excel output for the estimated regression equation that can be used to predict the selling price given square footage and the number of bedrooms: ### Summary Output **Regression Statistics:** |Metric | Value | |----------------------|----------| |Multiple R | 0.7428 | |R Square | 0.5518 | |Adjusted R Square | 0.5128 | |Standard Error | 60591.9567 | |Observations | 26 | **ANOVA Table:** | | df | SS | MS | F | Significance F | |--------------------|----|--------------|----------------|-------------|------------------| |Regression | 2 | 1.03955E+11 | 51977265516 | 14.15739901 | 9.81929E-05 | |Residual | 23 | 84441860122 | 3671385223 | | | |Total | 25 | 1.88396E+11 | | | | **Coefficients:** |Variable | Coefficients | Standard Error | t Stat | P-value | Lower 95% | Upper 95% | |--------------------|--------------|----------------|--------|---------|-----------|-------------| |Intercept | -5882.7622 | 65587.6835 | -0.0897| 0.9293 | -141561.2229 | 129795.6985 | |Sq Ft | 59.7331 | 21.2707 | 2.8082 | 0.0100 | 15.7313 | 103.7349 | |Beds | 54309.2083 | 22101.623
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps

Blurred answer
Recommended textbooks for you
MATLAB: An Introduction with Applications
MATLAB: An Introduction with Applications
Statistics
ISBN:
9781119256830
Author:
Amos Gilat
Publisher:
John Wiley & Sons Inc
Probability and Statistics for Engineering and th…
Probability and Statistics for Engineering and th…
Statistics
ISBN:
9781305251809
Author:
Jay L. Devore
Publisher:
Cengage Learning
Statistics for The Behavioral Sciences (MindTap C…
Statistics for The Behavioral Sciences (MindTap C…
Statistics
ISBN:
9781305504912
Author:
Frederick J Gravetter, Larry B. Wallnau
Publisher:
Cengage Learning
Elementary Statistics: Picturing the World (7th E…
Elementary Statistics: Picturing the World (7th E…
Statistics
ISBN:
9780134683416
Author:
Ron Larson, Betsy Farber
Publisher:
PEARSON
The Basic Practice of Statistics
The Basic Practice of Statistics
Statistics
ISBN:
9781319042578
Author:
David S. Moore, William I. Notz, Michael A. Fligner
Publisher:
W. H. Freeman
Introduction to the Practice of Statistics
Introduction to the Practice of Statistics
Statistics
ISBN:
9781319013387
Author:
David S. Moore, George P. McCabe, Bruce A. Craig
Publisher:
W. H. Freeman