Spheres A (mass 0.040 kg), B (mass 0.060 kg) and C (mass 0.080 kg) are approaching the origin as they slide on a frictionless air table. The initial velocities of A and B are v₁ = 1.60 m/s in the negative x direction and vg = 0.90 m/s at an angle 0 = 60°, as shown. All three spheres arrive at the origin at the same time and stick together. After the collision, the masses move at a speed of 0.50 m/s in the -x direction. UC y O OB B UB VA A X C a. What is the x-component of the initial velocity of C? b. What is the y-component of the initial velocity of C? c. Calculate the change in mechanical energy of the collision. d. What type of collision is this? Explain.
Spheres A (mass 0.040 kg), B (mass 0.060 kg) and C (mass 0.080 kg) are approaching the origin as they slide on a frictionless air table. The initial velocities of A and B are v₁ = 1.60 m/s in the negative x direction and vg = 0.90 m/s at an angle 0 = 60°, as shown. All three spheres arrive at the origin at the same time and stick together. After the collision, the masses move at a speed of 0.50 m/s in the -x direction. UC y O OB B UB VA A X C a. What is the x-component of the initial velocity of C? b. What is the y-component of the initial velocity of C? c. Calculate the change in mechanical energy of the collision. d. What type of collision is this? Explain.
Related questions
Question
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 2 steps with 1 images