Specify and implement a rational number type. Give the rep invariant and abstraction function and implement repOk and tostring
Specify and implement a rational number type. Give the rep invariant and abstraction function and implement repOk and tostring
public class Rational {
private int num, den;
//constructors
public Rational(){
int numb = 0;
int denm = 1;
}
public Rational(int numb, int denm){
num = numb;
den = denm;
int C=this.gcd(num, den);
num=num/C;
den=den/C;
}
public Rational(Rational x){
num = x.num;
den = x.den;
int C=this.gcd(num, den);
num=num/C;
den=den/C;
}
//getters
public int getNum(){
return num;
}
public int getDen(){
return den;
}
//Equals method
public boolean equals(Rational x){
if (num/ den== x.num / x.den){
return(true);
}
else {
return(false);
}
}
//Find greatest common divisor
private int gcd(int x, int y){
int r;
while (y != 0) {
r = x % y;
x = y;
y = r;
}
return x;
}
//Rational Addition
public void plus(Rational x){
int greatdenom = x.den * den;
int multx = greatden / x.den;
int mult = greatden / den;
den = x.den* den;
numer = (x.num * multx) + (num * mult);
int C=this.gcd(num, den);
num=num/C;
den=den/C;
}
//Rational Subtraction
public void minus(Rational x){
int greatden = x.den * den;
int multx = greatden / x.den;
int mult = greatden / den;
den = x.den * den;
if (x.numer > numer){
num = (x.numer * multx) - (numer * mult);
}
else {
num = (num * mult) - (x.num * multx);
}
int C=this.gcd(num, den);
num=num/C;
den=den/C;
}
Trending now
This is a popular solution!
Step by step
Solved in 2 steps