Some properties of Expected value and variance of a random variable. a) Assume that X is an arbitrary discrete random variable, and a and b are constant. Using the definitic Show: and E(aX + b) = a · E(X) + b V(aX + b) = a² · V(X ) Stat 3128 Ali Mahzarnia STAT 3128 Ali Mahzarnia b) Justify the computational formula of Variance of a random variable which is to justify : V(X) = E[(X – µ°] = Er– µ}° • ptx) = | Ex² - px) – µ² = E(X*) – [EX)F Σ Here needs justification
Some properties of Expected value and variance of a random variable. a) Assume that X is an arbitrary discrete random variable, and a and b are constant. Using the definitic Show: and E(aX + b) = a · E(X) + b V(aX + b) = a² · V(X ) Stat 3128 Ali Mahzarnia STAT 3128 Ali Mahzarnia b) Justify the computational formula of Variance of a random variable which is to justify : V(X) = E[(X – µ°] = Er– µ}° • ptx) = | Ex² - px) – µ² = E(X*) – [EX)F Σ Here needs justification
MATLAB: An Introduction with Applications
6th Edition
ISBN:9781119256830
Author:Amos Gilat
Publisher:Amos Gilat
Chapter1: Starting With Matlab
Section: Chapter Questions
Problem 1P
Related questions
Question
![2. Some properties of Expected value and variance of a random variable.
a) Assume that X is an arbitrary discrete random variable, and a and b are constant. Using the definitic
Show:
and
E(aX + b) = a · E(X) + b
V(aX + b) = a² · V(X )
Stat 3128 Ali Mahzarnia
P
STAT 3128
Ali Mahzarnia
b) Justify the computational formula of Variance of a random variable which is to justify :
V(X) = E[(X – µ°] = Ex – µ)P • ptx) = | 2:
Here needs
justification
By Cauchy Schwarz inequality it can be shown that the right hand side is always positive.
Analogs expression in Mechanic : Parallel axis theorem
Iem
= I– md²
Moment of
Moment of
inetria about
Inertia of an
an axis shifted
object about the
center of a mass
by d from
center of mass
(a parallel shift)
Icm is dispersion around the mean and is like second central moment
(variance) I is like second moment if d is mean
m is like sum total all the weight of each of the x which all add up to 1
d squared is like squared of mean since we,](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F072e444d-1bde-4899-b3c3-9f07885f3d58%2Fd9be63b1-98d9-4bd5-89f1-753c0c16d5d7%2Fmesf1wf_processed.png&w=3840&q=75)
Transcribed Image Text:2. Some properties of Expected value and variance of a random variable.
a) Assume that X is an arbitrary discrete random variable, and a and b are constant. Using the definitic
Show:
and
E(aX + b) = a · E(X) + b
V(aX + b) = a² · V(X )
Stat 3128 Ali Mahzarnia
P
STAT 3128
Ali Mahzarnia
b) Justify the computational formula of Variance of a random variable which is to justify :
V(X) = E[(X – µ°] = Ex – µ)P • ptx) = | 2:
Here needs
justification
By Cauchy Schwarz inequality it can be shown that the right hand side is always positive.
Analogs expression in Mechanic : Parallel axis theorem
Iem
= I– md²
Moment of
Moment of
inetria about
Inertia of an
an axis shifted
object about the
center of a mass
by d from
center of mass
(a parallel shift)
Icm is dispersion around the mean and is like second central moment
(variance) I is like second moment if d is mean
m is like sum total all the weight of each of the x which all add up to 1
d squared is like squared of mean since we,
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 2 steps with 2 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![MATLAB: An Introduction with Applications](https://www.bartleby.com/isbn_cover_images/9781119256830/9781119256830_smallCoverImage.gif)
MATLAB: An Introduction with Applications
Statistics
ISBN:
9781119256830
Author:
Amos Gilat
Publisher:
John Wiley & Sons Inc
![Probability and Statistics for Engineering and th…](https://www.bartleby.com/isbn_cover_images/9781305251809/9781305251809_smallCoverImage.gif)
Probability and Statistics for Engineering and th…
Statistics
ISBN:
9781305251809
Author:
Jay L. Devore
Publisher:
Cengage Learning
![Statistics for The Behavioral Sciences (MindTap C…](https://www.bartleby.com/isbn_cover_images/9781305504912/9781305504912_smallCoverImage.gif)
Statistics for The Behavioral Sciences (MindTap C…
Statistics
ISBN:
9781305504912
Author:
Frederick J Gravetter, Larry B. Wallnau
Publisher:
Cengage Learning
![MATLAB: An Introduction with Applications](https://www.bartleby.com/isbn_cover_images/9781119256830/9781119256830_smallCoverImage.gif)
MATLAB: An Introduction with Applications
Statistics
ISBN:
9781119256830
Author:
Amos Gilat
Publisher:
John Wiley & Sons Inc
![Probability and Statistics for Engineering and th…](https://www.bartleby.com/isbn_cover_images/9781305251809/9781305251809_smallCoverImage.gif)
Probability and Statistics for Engineering and th…
Statistics
ISBN:
9781305251809
Author:
Jay L. Devore
Publisher:
Cengage Learning
![Statistics for The Behavioral Sciences (MindTap C…](https://www.bartleby.com/isbn_cover_images/9781305504912/9781305504912_smallCoverImage.gif)
Statistics for The Behavioral Sciences (MindTap C…
Statistics
ISBN:
9781305504912
Author:
Frederick J Gravetter, Larry B. Wallnau
Publisher:
Cengage Learning
![Elementary Statistics: Picturing the World (7th E…](https://www.bartleby.com/isbn_cover_images/9780134683416/9780134683416_smallCoverImage.gif)
Elementary Statistics: Picturing the World (7th E…
Statistics
ISBN:
9780134683416
Author:
Ron Larson, Betsy Farber
Publisher:
PEARSON
![The Basic Practice of Statistics](https://www.bartleby.com/isbn_cover_images/9781319042578/9781319042578_smallCoverImage.gif)
The Basic Practice of Statistics
Statistics
ISBN:
9781319042578
Author:
David S. Moore, William I. Notz, Michael A. Fligner
Publisher:
W. H. Freeman
![Introduction to the Practice of Statistics](https://www.bartleby.com/isbn_cover_images/9781319013387/9781319013387_smallCoverImage.gif)
Introduction to the Practice of Statistics
Statistics
ISBN:
9781319013387
Author:
David S. Moore, George P. McCabe, Bruce A. Craig
Publisher:
W. H. Freeman