Some experiments require calibration of the equipment before the mea- surements can be made. Any random errors in the calibration will usually become Systematic errors in the experiment itself. To illustrate this effect, consider an exper- iment on the Zeeman effect, in which a magnetic field causes a tiny shift in the 4.27. frequency of light given out by an atom. This shift can be measured using a Fabry- Perot interferometer, which consists of two parallel reflecting surfaces a distance d apart (where d is typically a couple of millimeters). To use the interferometer, one must know the distance d; that is, one must calibrate the instrument by measuring d. A convenient way to make this measurement is to send light of an accurately known wavelength A through the interferometer, which produces a series of interfer- reference marks fringes wavelength is sent through a Fabry-Perot interferometer, it pro- Figure 4.3. When light of one duces a pattern of alternating light and dark fringes. If the air is pumped out of the interferome- ter, the whole pattern shifts sideways, and the number of complete fringes (light-dark-light) that pass the reference marks can be counted; for Problem 4.27. ence fringes like those depicted in Figure 4.3. If all the air is then pumped out of the chamber that houses the interferometer, the interference pattern slowly shifts sideways, and the number of fringes that move past the reference marks is 1)d/A, where n denotes the refractive index of air. Because n and A are known accurately, d can be found by counting N. Because N is not necessarily N =2(n an integer, the fractions of complete fringes that pass the reference marks must be estimated, and this estimation introduces the only serious source of uncertainty. (a) In one such experiment, a student measures N five times as follows: values of N = 3.0, 3.5, 3.2, 3.0, 3.2. What is her best estimate for N and its uncertainty? What is the resulting percent uncertainty in d? (b) The uncertainty you just found is purely random. Nevertheless, in all subsequent measurements using the interferometer, she will be using the same value of d she found in part (a), and any error in that value will cause a systematic error in her final answers. What percent value should she use for this systematic error in d?

College Physics
11th Edition
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Raymond A. Serway, Chris Vuille
Chapter1: Units, Trigonometry. And Vectors
Section: Chapter Questions
Problem 1CQ: Estimate the order of magnitude of the length, in meters, of each of the following; (a) a mouse, (b)...
icon
Related questions
Question
Some experiments require calibration of the equipment before the mea-
surements can be made. Any random errors in the calibration will usually become
Systematic errors in the experiment itself. To illustrate this effect, consider an exper-
iment on the Zeeman effect, in which a magnetic field causes a tiny shift in the
4.27.
frequency of light given out by an atom. This shift can be measured using a Fabry-
Perot interferometer, which consists of two parallel reflecting surfaces a distance d
apart (where d is typically a couple of millimeters). To use the interferometer, one
must know the distance d; that is, one must calibrate the instrument by measuring
d. A convenient way to make this measurement is to send light of an accurately
known wavelength A through the interferometer, which produces a series of interfer-
reference marks
fringes
wavelength is sent through a Fabry-Perot interferometer, it pro-
Figure 4.3. When light of one
duces a pattern of alternating light and dark fringes. If the air is pumped out of the interferome-
ter, the whole pattern shifts sideways, and the number of complete fringes (light-dark-light) that
pass the reference marks can be counted; for Problem 4.27.
ence fringes like those depicted in Figure 4.3. If all the air is then pumped out of
the chamber that houses the interferometer, the interference pattern slowly shifts
sideways, and the number of fringes that move past the reference marks is
1)d/A, where n denotes the refractive index of air. Because n and A are
known accurately, d can be found by counting N. Because N is not necessarily
N =2(n
an
integer, the fractions of complete fringes that pass the reference marks must be
estimated, and this estimation introduces the only serious source of uncertainty.
(a) In one such experiment, a student measures N five times as follows:
values of N = 3.0, 3.5, 3.2, 3.0, 3.2.
What is her best estimate for N and its uncertainty? What is the resulting percent
uncertainty in d? (b) The uncertainty you just found is purely random. Nevertheless,
in all subsequent measurements using the interferometer, she will be using the same
value of d she found in part (a), and any error in that value will cause a systematic
error in her final answers. What percent value should she use for this systematic
error in d?
Transcribed Image Text:Some experiments require calibration of the equipment before the mea- surements can be made. Any random errors in the calibration will usually become Systematic errors in the experiment itself. To illustrate this effect, consider an exper- iment on the Zeeman effect, in which a magnetic field causes a tiny shift in the 4.27. frequency of light given out by an atom. This shift can be measured using a Fabry- Perot interferometer, which consists of two parallel reflecting surfaces a distance d apart (where d is typically a couple of millimeters). To use the interferometer, one must know the distance d; that is, one must calibrate the instrument by measuring d. A convenient way to make this measurement is to send light of an accurately known wavelength A through the interferometer, which produces a series of interfer- reference marks fringes wavelength is sent through a Fabry-Perot interferometer, it pro- Figure 4.3. When light of one duces a pattern of alternating light and dark fringes. If the air is pumped out of the interferome- ter, the whole pattern shifts sideways, and the number of complete fringes (light-dark-light) that pass the reference marks can be counted; for Problem 4.27. ence fringes like those depicted in Figure 4.3. If all the air is then pumped out of the chamber that houses the interferometer, the interference pattern slowly shifts sideways, and the number of fringes that move past the reference marks is 1)d/A, where n denotes the refractive index of air. Because n and A are known accurately, d can be found by counting N. Because N is not necessarily N =2(n an integer, the fractions of complete fringes that pass the reference marks must be estimated, and this estimation introduces the only serious source of uncertainty. (a) In one such experiment, a student measures N five times as follows: values of N = 3.0, 3.5, 3.2, 3.0, 3.2. What is her best estimate for N and its uncertainty? What is the resulting percent uncertainty in d? (b) The uncertainty you just found is purely random. Nevertheless, in all subsequent measurements using the interferometer, she will be using the same value of d she found in part (a), and any error in that value will cause a systematic error in her final answers. What percent value should she use for this systematic error in d?
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 9 steps with 8 images

Blurred answer
Similar questions
Recommended textbooks for you
College Physics
College Physics
Physics
ISBN:
9781305952300
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning
University Physics (14th Edition)
University Physics (14th Edition)
Physics
ISBN:
9780133969290
Author:
Hugh D. Young, Roger A. Freedman
Publisher:
PEARSON
Introduction To Quantum Mechanics
Introduction To Quantum Mechanics
Physics
ISBN:
9781107189638
Author:
Griffiths, David J., Schroeter, Darrell F.
Publisher:
Cambridge University Press
Physics for Scientists and Engineers
Physics for Scientists and Engineers
Physics
ISBN:
9781337553278
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:
9780321820464
Author:
Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:
Addison-Wesley
College Physics: A Strategic Approach (4th Editio…
College Physics: A Strategic Approach (4th Editio…
Physics
ISBN:
9780134609034
Author:
Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:
PEARSON