Solving Differential Equation by Laplace Transform Solve the following initial value problems using Laplace transform and plase your solution using the indicated format: 1. (D³ + 2D² +D+2)y=5+4sin(t) : y(0) = 3, y'(0) = 1, y″(0) = 2 2. (D²+5D+6)y=5+3e³¹: y(0) = 5, y'(0) = 0 3. (D² +6D+4) y = 6e² +41² : y(0) = 4, y(0) = 2 Required: 1. Use laplace transforms 2. Find the laplace transform of the entire equation and set it implicitly (eqn1, eq2,eqn3). 3. Plugin the initial conditions and save it as L_Eq1,L_Eq2, L_Eq3
Solving Differential Equation by Laplace Transform Solve the following initial value problems using Laplace transform and plase your solution using the indicated format: 1. (D³ + 2D² +D+2)y=5+4sin(t) : y(0) = 3, y'(0) = 1, y″(0) = 2 2. (D²+5D+6)y=5+3e³¹: y(0) = 5, y'(0) = 0 3. (D² +6D+4) y = 6e² +41² : y(0) = 4, y(0) = 2 Required: 1. Use laplace transforms 2. Find the laplace transform of the entire equation and set it implicitly (eqn1, eq2,eqn3). 3. Plugin the initial conditions and save it as L_Eq1,L_Eq2, L_Eq3
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
100%
ASAP. Please answer this correctly. I need the answer after 30 minutes. rate will be given. THANK YOU
![Solving Differential Equation by Laplace Transform
Solve the following initial value problems using Laplace transform and plase your solution using the indicated format:
1. (D³ +2D² +D+2)y=5+4sin(t): y(0) = 3, y(0) = 1, y"(0) = 2
2. (D² +5D+6)y=5+3e³t: y(0) = 5, y(0) = 0
3. (D²+6D+4) y = 6e²+ 41² : y(0) = 4, y(0) = 2
Required:
1. Use laplace transforms
2. Find the laplace transform of the entire equation and set it implicitly (eqn1, eq2,eqn3).
3. Plugin the initial conditions and save it as L_Eq1,L_Eq2, L_Eq3
4. Find the solution to the equation (ysoln1, ysoln2, ysoln3)](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F929ee3bc-b1ad-4e12-8ae1-a98e24d5b872%2Ff75921cc-d182-4203-a0b8-e3913a6fe341%2F8wms28k_processed.png&w=3840&q=75)
Transcribed Image Text:Solving Differential Equation by Laplace Transform
Solve the following initial value problems using Laplace transform and plase your solution using the indicated format:
1. (D³ +2D² +D+2)y=5+4sin(t): y(0) = 3, y(0) = 1, y"(0) = 2
2. (D² +5D+6)y=5+3e³t: y(0) = 5, y(0) = 0
3. (D²+6D+4) y = 6e²+ 41² : y(0) = 4, y(0) = 2
Required:
1. Use laplace transforms
2. Find the laplace transform of the entire equation and set it implicitly (eqn1, eq2,eqn3).
3. Plugin the initial conditions and save it as L_Eq1,L_Eq2, L_Eq3
4. Find the solution to the equation (ysoln1, ysoln2, ysoln3)
![1 syms y(t), t
Dy=diff(y);
3 D2y=diff(y, 2);
4 D3y=diff(y, 3);
5](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F929ee3bc-b1ad-4e12-8ae1-a98e24d5b872%2Ff75921cc-d182-4203-a0b8-e3913a6fe341%2Ft8bu2ru_processed.png&w=3840&q=75)
Transcribed Image Text:1 syms y(t), t
Dy=diff(y);
3 D2y=diff(y, 2);
4 D3y=diff(y, 3);
5
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
Step by step
Solved in 10 steps
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Mathematics For Machine Technology](https://www.bartleby.com/isbn_cover_images/9781337798310/9781337798310_smallCoverImage.jpg)
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
![Basic Technical Mathematics](https://www.bartleby.com/isbn_cover_images/9780134437705/9780134437705_smallCoverImage.gif)
![Topology](https://www.bartleby.com/isbn_cover_images/9780134689517/9780134689517_smallCoverImage.gif)