Solve. Try different ways! O 1. (x+ y) dx + (x – y) dy = 0 2. (6x + y") dx + y (2x- 3y) dy = 0 3. (2xy– 3x°) dx + (x² + y) dy = 0 4. (y² – 2xy + 6x) dx – (x² – 2xy + 2) dy = 0 5. (2xy + y) dx + (x²-x) dy = 0 6. x (3xy – 4y + 6) dx + (x² – 6x°y² – 1) dy =0 7. [2x + y cos (xy)] dx + x cos (xy) dy = 0 8. (sin e - 2r cos? e) dr + r cos e (2r sin e +1) de = 0 9. (w+ wz? - 2) dw + (z² +w°z= w) dz = 0 10. (r+ sin e - cos e) dr +r (sin e + cos e)d e = 0

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

can you please give the solution for number 1

МАTН-443
DIFFERENTIAL EQUATIONS
Problem Set 5
Solve. Try different ways! O
1. (x+ y) dx + (x – y) dy = 0
2. (бх +у) dx +y (2х - 3у) dy 3D0
3. (2ху- 3x) dx + (x? + у) dy 3D0
4. (y² – 2xy + 6x) dx – (x² – 2xy + 2) dy = 0
5. (2ху + y) dx + (x?- х) dy 3D0
6. x (3ху- 4y + 6) dx + (x - бх'у - 1) dyу - 0
7. [2x + y cos (xy)] dx + x cos (xy) dy = 0
8. (sin e - 2r cos' e) dr +r cos e (2r sin e +1) de = 0
9. (w+ wz? - 2) dw + (z² +w?z = w) dz = 0
10. (r + sin e - cos e) dr +r (sin e+ cos e)d e = 0
Transcribed Image Text:МАTН-443 DIFFERENTIAL EQUATIONS Problem Set 5 Solve. Try different ways! O 1. (x+ y) dx + (x – y) dy = 0 2. (бх +у) dx +y (2х - 3у) dy 3D0 3. (2ху- 3x) dx + (x? + у) dy 3D0 4. (y² – 2xy + 6x) dx – (x² – 2xy + 2) dy = 0 5. (2ху + y) dx + (x?- х) dy 3D0 6. x (3ху- 4y + 6) dx + (x - бх'у - 1) dyу - 0 7. [2x + y cos (xy)] dx + x cos (xy) dy = 0 8. (sin e - 2r cos' e) dr +r cos e (2r sin e +1) de = 0 9. (w+ wz? - 2) dw + (z² +w?z = w) dz = 0 10. (r + sin e - cos e) dr +r (sin e+ cos e)d e = 0
Expert Solution
steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,