Solve y (kx √√3) dx + (√3 − kx) dy O a. 2kx + 4√/31n|kx √3- O b. 2kx + 4√3ln|kx c. 2kx + 4√3 ln | kx - 2k In|y| √3 - 2k In ly √3+2k In y yz (kx + k sin (kz²) = C k sin (kz²) = C k sin (kz²) = C √3) cos (kz²) dz = 0

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
Solve the differential equation using the separation of variables. Provide a complete solution. Use a handwritten and step-by-step calculation without the use of calculator. Explain the process and simplify your answer.
Solve
y (kx
√3) dx + (√√3 − kx) dy
kx) dy - yz (kx √√3) cos (kz²) dz = 0
+ k sin (kz²) = C
√√3| − 2k ln |y|
√3 - 2k In|y|
√3+2k In y
- k sin (kz²) = C
O a. 2kx + 4√3ln|kx
O b. 2kx + 4√/31n|kx
O c. 2kx +4√3ln|kx
-
k sin (kz²) = C
Transcribed Image Text:Solve y (kx √3) dx + (√√3 − kx) dy kx) dy - yz (kx √√3) cos (kz²) dz = 0 + k sin (kz²) = C √√3| − 2k ln |y| √3 - 2k In|y| √3+2k In y - k sin (kz²) = C O a. 2kx + 4√3ln|kx O b. 2kx + 4√/31n|kx O c. 2kx +4√3ln|kx - k sin (kz²) = C
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,