Solve (y - 3)² = -54 for y y=3± √6i y = 3±3i y=3±3√6i y = 3+ 6i

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
**Problem:**

Solve the equation \((y - 3)^2 = -54\) for \(y\).

**Answer Choices:**

- \(y = 3 \pm \sqrt{6}i\)
- \(y = 3 \pm 3i\)
- \(y = 3 \pm 3\sqrt{6}i\)
- \(y = 3 \pm 6i\)

**Solution Explanation:**

1. Start with the given equation: \((y - 3)^2 = -54\).
2. Take the square root of both sides: 
   \[
   y - 3 = \pm \sqrt{-54}
   \]
3. Recognize that \(\sqrt{-54}\) can be rewritten using imaginary numbers:
   \[
   \sqrt{-54} = \sqrt{54} \cdot i = \sqrt{9 \times 6} \cdot i = 3\sqrt{6} \cdot i
   \]
4. Substituting back, we have:
   \[
   y - 3 = \pm 3\sqrt{6}i
   \]
5. Solve for \(y\):
   \[
   y = 3 \pm 3\sqrt{6}i
   \]

Thus, the correct answer is: \(y = 3 \pm 3\sqrt{6}i\).
Transcribed Image Text:**Problem:** Solve the equation \((y - 3)^2 = -54\) for \(y\). **Answer Choices:** - \(y = 3 \pm \sqrt{6}i\) - \(y = 3 \pm 3i\) - \(y = 3 \pm 3\sqrt{6}i\) - \(y = 3 \pm 6i\) **Solution Explanation:** 1. Start with the given equation: \((y - 3)^2 = -54\). 2. Take the square root of both sides: \[ y - 3 = \pm \sqrt{-54} \] 3. Recognize that \(\sqrt{-54}\) can be rewritten using imaginary numbers: \[ \sqrt{-54} = \sqrt{54} \cdot i = \sqrt{9 \times 6} \cdot i = 3\sqrt{6} \cdot i \] 4. Substituting back, we have: \[ y - 3 = \pm 3\sqrt{6}i \] 5. Solve for \(y\): \[ y = 3 \pm 3\sqrt{6}i \] Thus, the correct answer is: \(y = 3 \pm 3\sqrt{6}i\).
Expert Solution
Step 1: Introduction of the problem

Advanced Math homework question answer, step 1, image 1

steps

Step by step

Solved in 3 steps with 3 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,